{"title":"On the purinergic system in rat duodenum: existence of P1 and P2 receptors on the smooth muscle.","authors":"A Postorino, R Serio, F Mulè","doi":"10.3109/13813459009115737","DOIUrl":null,"url":null,"abstract":"<p><p>In rat duodenum, in vitro, in the presence of atropine and guanethidine, ATP administration caused a tetrodotoxin-insensitive relaxation followed by a rebound contraction. A similar response was obtained also after electrical field stimulation (EFS) of non-adrenergic, non-cholinergic (NANC) nerves. alpha, beta-methylene-TP and theophylline antagonized the response to ATP, but they failed to affect the noradrenaline- and EFS-induced relaxation. These results suggest that P1 and P2 receptors are present in rat duodenum, but their activation is not responsible for the inhibitor effects due to the NANC nerves.</p>","PeriodicalId":8170,"journal":{"name":"Archives internationales de physiologie et de biochimie","volume":"98 1","pages":"53-8"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/13813459009115737","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de physiologie et de biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/13813459009115737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In rat duodenum, in vitro, in the presence of atropine and guanethidine, ATP administration caused a tetrodotoxin-insensitive relaxation followed by a rebound contraction. A similar response was obtained also after electrical field stimulation (EFS) of non-adrenergic, non-cholinergic (NANC) nerves. alpha, beta-methylene-TP and theophylline antagonized the response to ATP, but they failed to affect the noradrenaline- and EFS-induced relaxation. These results suggest that P1 and P2 receptors are present in rat duodenum, but their activation is not responsible for the inhibitor effects due to the NANC nerves.