{"title":"A two-dimensional, object-based analog VLSI visual attention system","authors":"Charles S. Wilson, T. Morris, S. DeWeerth","doi":"10.1109/ARVLSI.1999.756055","DOIUrl":null,"url":null,"abstract":"A two-dimensional object-based analog VLSI model of selective attentional processing has been implemented using a standard 1.2 /spl mu/m CMOS process. This chip extends previous work modeling object-based selection and scanning by incorporating the circuity and architectural changes necessary for two-dimensional focal plane processing. To balance the need for closely spaced large photodetectors with the space requirements of complex in-pixel processing, the chip implements a multiresolution architecture. The system has he ability to group pixels into objects; this grouping is dynamic, driven solely by the segmentation criterion at the input. In the demonstration system, image intensity has been chosen for the input saliency map and the segmentation is based on spatial lowpass filtering followed by an intensity threshold. We present experimental results.","PeriodicalId":358015,"journal":{"name":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARVLSI.1999.756055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A two-dimensional object-based analog VLSI model of selective attentional processing has been implemented using a standard 1.2 /spl mu/m CMOS process. This chip extends previous work modeling object-based selection and scanning by incorporating the circuity and architectural changes necessary for two-dimensional focal plane processing. To balance the need for closely spaced large photodetectors with the space requirements of complex in-pixel processing, the chip implements a multiresolution architecture. The system has he ability to group pixels into objects; this grouping is dynamic, driven solely by the segmentation criterion at the input. In the demonstration system, image intensity has been chosen for the input saliency map and the segmentation is based on spatial lowpass filtering followed by an intensity threshold. We present experimental results.