Bellman Filtering for State-Space Models

Rutger-Jan Lange
{"title":"Bellman Filtering for State-Space Models","authors":"Rutger-Jan Lange","doi":"10.2139/ssrn.3682036","DOIUrl":null,"url":null,"abstract":"This article presents a new filter for state-space models based on Bellman's dynamic programming principle applied to the posterior mode. The proposed Bellman filter generalises the Kalman filter including its extended and iterated versions, while remaining equally inexpensive computationally. The Bellman filter is also (unlike the Kalman filter) robust under heavy-tailed observation noise and applicable to a wider range of models. Simulation studies reveal that the mean absolute error of the Bellman-filtered states using estimated parameters typically falls within a few percent of that produced by the mode estimator evaluated at the true parameters, which is optimal but generally infeasible.","PeriodicalId":122400,"journal":{"name":"IRPN: Innovation & Econometrics (Topic)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Innovation & Econometrics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3682036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a new filter for state-space models based on Bellman's dynamic programming principle applied to the posterior mode. The proposed Bellman filter generalises the Kalman filter including its extended and iterated versions, while remaining equally inexpensive computationally. The Bellman filter is also (unlike the Kalman filter) robust under heavy-tailed observation noise and applicable to a wider range of models. Simulation studies reveal that the mean absolute error of the Bellman-filtered states using estimated parameters typically falls within a few percent of that produced by the mode estimator evaluated at the true parameters, which is optimal but generally infeasible.
状态空间模型的Bellman滤波
将Bellman动态规划原理应用于后验模式,提出一种新的状态空间模型滤波方法。提出的贝尔曼滤波器推广了卡尔曼滤波器,包括其扩展和迭代版本,同时保持同样便宜的计算。与卡尔曼滤波器不同,贝尔曼滤波器在重尾观测噪声下具有鲁棒性,适用于更广泛的模型。仿真研究表明,使用估计参数的bellman滤波状态的平均绝对误差通常低于在真实参数下评估的模态估计器产生的平均绝对误差的百分之几,这是最优的,但通常是不可实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信