AlN-capped P-(AlxGal-x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices

J. S. Lundh, Hannah N. Masten, K. Sasaki, A. Jacobs, Zhe Cheng, J. Spencer, Lei Chen, J. Gallagher, A. Koehler, K. Konishi, S. Graham, A. Kuramata, K. Hobart, M. Tadjer
{"title":"AlN-capped P-(AlxGal-x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices","authors":"J. S. Lundh, Hannah N. Masten, K. Sasaki, A. Jacobs, Zhe Cheng, J. Spencer, Lei Chen, J. Gallagher, A. Koehler, K. Konishi, S. Graham, A. Kuramata, K. Hobart, M. Tadjer","doi":"10.1109/drc55272.2022.9855809","DOIUrl":null,"url":null,"abstract":"While the ultrawide bandgap (Eg~4.9 e V) and high critical electric field (E<inf>c</inf>~8 MV /cm) of ß-Ga<inf>2</inf>O<inf>3</inf> [1] has promising implications for power electronics, the very low bulk thermal conductivity (0.11-0.27 W/cm.K [2]) presents a formidable thermal challenge. For lateral devices, heat is typically generated within tens of nanometers of the semiconductor surface. Therefore, a pathway for efficient heat dissipation through the surface could substantially improve device-level thermal performance. In this work, we report the first experimental demonstration of top-side device-level thermal management of Ga<inf>2</inf>O<inf>3</inf>-based transistors by capping an (Al<inf>0.21</inf>Ga<inf>0.79</inf>)<inf>2</inf>O<inf>3</inf>/Ga<inf>2</inf>O<inf>3</inf> heterostructure field-effect transistor (HFET) with a ~400 nm thick sputter-deposited aluminum nitride (AlN) heat spreading layer. Compared to a reference HFET, we observed a ~30% reduction in device-level thermal resistance at the gate electrode.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/drc55272.2022.9855809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While the ultrawide bandgap (Eg~4.9 e V) and high critical electric field (Ec~8 MV /cm) of ß-Ga2O3 [1] has promising implications for power electronics, the very low bulk thermal conductivity (0.11-0.27 W/cm.K [2]) presents a formidable thermal challenge. For lateral devices, heat is typically generated within tens of nanometers of the semiconductor surface. Therefore, a pathway for efficient heat dissipation through the surface could substantially improve device-level thermal performance. In this work, we report the first experimental demonstration of top-side device-level thermal management of Ga2O3-based transistors by capping an (Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistor (HFET) with a ~400 nm thick sputter-deposited aluminum nitride (AlN) heat spreading layer. Compared to a reference HFET, we observed a ~30% reduction in device-level thermal resistance at the gate electrode.
用于下一代功率器件近结热管理的aln封顶P-(AlxGal-x)2O3/Ga2O3异质结构场效应晶体管
虽然ß-Ga2O3[1]的超宽带隙(Eg~4.9 e V)和高临界电场(Ec~8 MV /cm)在电力电子领域具有很好的应用前景,但其极低的体热导率(0.11-0.27 W/cm)具有良好的应用前景。k[2])提出了一个巨大的热挑战。对于横向器件,通常在半导体表面的几十纳米内产生热量。因此,通过表面有效散热的途径可以大大提高器件级热性能。在这项工作中,我们首次报道了用~400 nm厚的溅射沉积氮化铝(AlN)热扩散层覆盖(Al0.21Ga0.79)2O3/Ga2O3异质结构场效应晶体管(HFET)的顶部器件级热管理的实验演示。与参考HFET相比,我们观察到栅极的器件级热阻降低了约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信