{"title":"Specialty Grand Challenge: IoT Communication and Networking Protocols","authors":"Deze Zeng","doi":"10.3389/friot.2022.948558","DOIUrl":null,"url":null,"abstract":"In the last decade, various kinds of smart end devices and sensors have been widely deployed and applied, and become the necessities in modern society Chettri and Bera (2019). It is also widely recognized that these devices should well collaborate with each other. This also catalyses the birth of Internet-of-Things (IoT) Hassan. (2019). IoT allows various devices, such as sensors, actuators, smart phones, and any smart devices, to connect with each other via the network, and to work together for providing better services eventually. Thanks to the fast development in the last decades, IoT has been applied in various aspects successfully, i.e., smart home Yang et al. (2018), smart city Kim et al. (2017) and smart health Sun et al. (2020), greatly reshaping our society. As communication is the core to realize collaboration, the communication and networking protocol plays a critical role in implementing an IoT system. As already widely discussed, due to the limitation of size, power and computation capability, traditional Internet oriented communication and networking protocols are not quite suitable to IoT. To this end, many protocols, such as Bluetooth Low Energy, ZigBee, Lora, NB-IoT, CoAP, 6LoWPAN, MQTT, have been proposed with different characteristics (e.g., power consumption, transmission rate, transmission range, etc.,) and application domains Dizdarević et al. (2019). In addition, the recent 5G, B5G, and 6G networks are also well known for their special support to IoT communications. Besides, Artificial Intelligence (AI) technology also become an essential part of IoT systems. Besides exploring AI technology to process the IoT data, the system could be also manipulated by AI for autonomous performance or resource efficiency optimization. Recognizing the fact that one protocol may not fit for all scenarios, the coordination and the compatibility between different protocols thus become critical issues. Besides, various IoT applications also urge us to optimize the communication and network protocols to satisfy diverse Quality-of-Experience (QoE). Therefore, in the past decades, many efforts has been devoted to optimizing the IoT communication and networking protocols from various aspects. Nonetheless, with the emergence of new technologies (e.g., Software Define Networking, backscatter communications, Blockchain), new trend (e.g., in-network computing), new applications (e.g., autonomous driving), the protocol design is still a hot topic as it still confronts many challenges. As a result, in this article, we will discuss the main challenges imposed by these new technologies, concept, and trends to the design of IoT communication and networking protocols. The rest of the paper is organized as follows: Section 2 discusses eight main challenges in the development of IoT communication and networking protocols. Section 3 summarizes these challenges and concludes this article. Edited and reviewed by: Rajkumar Buyya, The University of Melbourne, Australia","PeriodicalId":308773,"journal":{"name":"Frontiers in The Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in The Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/friot.2022.948558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, various kinds of smart end devices and sensors have been widely deployed and applied, and become the necessities in modern society Chettri and Bera (2019). It is also widely recognized that these devices should well collaborate with each other. This also catalyses the birth of Internet-of-Things (IoT) Hassan. (2019). IoT allows various devices, such as sensors, actuators, smart phones, and any smart devices, to connect with each other via the network, and to work together for providing better services eventually. Thanks to the fast development in the last decades, IoT has been applied in various aspects successfully, i.e., smart home Yang et al. (2018), smart city Kim et al. (2017) and smart health Sun et al. (2020), greatly reshaping our society. As communication is the core to realize collaboration, the communication and networking protocol plays a critical role in implementing an IoT system. As already widely discussed, due to the limitation of size, power and computation capability, traditional Internet oriented communication and networking protocols are not quite suitable to IoT. To this end, many protocols, such as Bluetooth Low Energy, ZigBee, Lora, NB-IoT, CoAP, 6LoWPAN, MQTT, have been proposed with different characteristics (e.g., power consumption, transmission rate, transmission range, etc.,) and application domains Dizdarević et al. (2019). In addition, the recent 5G, B5G, and 6G networks are also well known for their special support to IoT communications. Besides, Artificial Intelligence (AI) technology also become an essential part of IoT systems. Besides exploring AI technology to process the IoT data, the system could be also manipulated by AI for autonomous performance or resource efficiency optimization. Recognizing the fact that one protocol may not fit for all scenarios, the coordination and the compatibility between different protocols thus become critical issues. Besides, various IoT applications also urge us to optimize the communication and network protocols to satisfy diverse Quality-of-Experience (QoE). Therefore, in the past decades, many efforts has been devoted to optimizing the IoT communication and networking protocols from various aspects. Nonetheless, with the emergence of new technologies (e.g., Software Define Networking, backscatter communications, Blockchain), new trend (e.g., in-network computing), new applications (e.g., autonomous driving), the protocol design is still a hot topic as it still confronts many challenges. As a result, in this article, we will discuss the main challenges imposed by these new technologies, concept, and trends to the design of IoT communication and networking protocols. The rest of the paper is organized as follows: Section 2 discusses eight main challenges in the development of IoT communication and networking protocols. Section 3 summarizes these challenges and concludes this article. Edited and reviewed by: Rajkumar Buyya, The University of Melbourne, Australia