xRayAID Detecting Pneumonia Using Artificial Intelligence

Vinicius Trevisan, Daniel Rodrigues, Edmar R. S. Rezende
{"title":"xRayAID Detecting Pneumonia Using Artificial Intelligence","authors":"Vinicius Trevisan, Daniel Rodrigues, Edmar R. S. Rezende","doi":"10.5753/sbcas.2021.16048","DOIUrl":null,"url":null,"abstract":"Pneumonia is a type of acute respiratory infection that impacts people's lives in several ways, demanding an accurate and fast diagnosis. High death rates, massive socioeconomic impacts, and a significant gap between the number of available doctors based on its geographic location are some of the problems surrounding this topic. The xRayAID is a tool that uses machine learning to assist doctors in diagnosis of pneumonia on frontal chest radiographs. That was done by using a modified DenseNet-121 neural network architecture trained on the Radiological Society of North America (RSNA) public dataset. The results showed that this tool is able to help doctors to identify pneumonia scenarios, achieving a validation accuracy of 87.9%.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pneumonia is a type of acute respiratory infection that impacts people's lives in several ways, demanding an accurate and fast diagnosis. High death rates, massive socioeconomic impacts, and a significant gap between the number of available doctors based on its geographic location are some of the problems surrounding this topic. The xRayAID is a tool that uses machine learning to assist doctors in diagnosis of pneumonia on frontal chest radiographs. That was done by using a modified DenseNet-121 neural network architecture trained on the Radiological Society of North America (RSNA) public dataset. The results showed that this tool is able to help doctors to identify pneumonia scenarios, achieving a validation accuracy of 87.9%.
利用人工智能检测肺炎
肺炎是一种急性呼吸道感染,以多种方式影响人们的生活,需要准确和快速的诊断。高死亡率,巨大的社会经济影响,以及根据地理位置可获得的医生数量之间的巨大差距是围绕这一主题的一些问题。xRayAID是一种利用机器学习来帮助医生在胸部正面x光片上诊断肺炎的工具。这是通过使用在北美放射学会(RSNA)公共数据集上训练的改进的DenseNet-121神经网络架构来完成的。结果表明,该工具能够帮助医生识别肺炎场景,验证准确率达到87.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信