A case study by using Python to implement data and dimensionality reduction

Huang Chih-Chien, Hsu Chung-Chian, Wang Suefen, Pon YuShun, Li Wenwei
{"title":"A case study by using Python to implement data and dimensionality reduction","authors":"Huang Chih-Chien, Hsu Chung-Chian, Wang Suefen, Pon YuShun, Li Wenwei","doi":"10.1109/ICCECE51280.2021.9342094","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to research and explore the Data Dimension, and propose the data feature & selection of dimensionality reduction technique, in order to help users understand the impact and meaning between dimensionality reduction parameters and data dimension, thereby strengthening the use of dimension reduction algorithm. In previous studies, many scholars have proposed dimensionality reduction algorithms for various data types, such as Multi-Dimensional Scaling (MDS), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Facet Analysis (FA), Isometric Feature Maps (Isomap, using for manifold analysis), Local Linear Embedding (LLE), and Laplacian feature maps (Laplacian Eigenmaps). Most of these algorithms do not need to set parameters, and it has been obtained during the experiment that the selection of parameters has no visual analysis effect on the dataset in this experiment, and should be determined according to the feature of the dataset. This study is conducted by comparing the most used PCA and LDA dimensionality reduction techniques, as well as the analysis of merging other similarity methods while using MDS to process mixed data.","PeriodicalId":229425,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51280.2021.9342094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to research and explore the Data Dimension, and propose the data feature & selection of dimensionality reduction technique, in order to help users understand the impact and meaning between dimensionality reduction parameters and data dimension, thereby strengthening the use of dimension reduction algorithm. In previous studies, many scholars have proposed dimensionality reduction algorithms for various data types, such as Multi-Dimensional Scaling (MDS), Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Facet Analysis (FA), Isometric Feature Maps (Isomap, using for manifold analysis), Local Linear Embedding (LLE), and Laplacian feature maps (Laplacian Eigenmaps). Most of these algorithms do not need to set parameters, and it has been obtained during the experiment that the selection of parameters has no visual analysis effect on the dataset in this experiment, and should be determined according to the feature of the dataset. This study is conducted by comparing the most used PCA and LDA dimensionality reduction techniques, as well as the analysis of merging other similarity methods while using MDS to process mixed data.
一个使用Python实现数据降维的案例研究
本研究的目的是对数据维度进行研究和探索,提出降维技术的数据特征和选择,以帮助用户了解降维参数与数据维度之间的影响和意义,从而加强降维算法的使用。在以往的研究中,许多学者针对不同的数据类型提出了降维算法,如多维尺度(MDS)、线性判别分析(LDA)、主成分分析(PCA)、Facet分析(FA)、等长特征映射(Isomap,用于流形分析)、局部线性嵌入(LLE)和拉普拉斯特征映射(拉普拉斯特征映射)。这些算法大多不需要设置参数,并且在实验中得到,参数的选择在本实验中对数据集没有直观的分析效果,应该根据数据集的特征来确定。本研究通过比较最常用的PCA降维技术和LDA降维技术,以及使用MDS处理混合数据时合并其他相似度方法的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信