Systematic selection of local correlation parameters for optical flow-based gesture recognition

A. Nishikawa, M. Nishimura, A. Hirano, K. Koara, F. Miyazaki
{"title":"Systematic selection of local correlation parameters for optical flow-based gesture recognition","authors":"A. Nishikawa, M. Nishimura, A. Hirano, K. Koara, F. Miyazaki","doi":"10.1109/ROMAN.1999.900337","DOIUrl":null,"url":null,"abstract":"We develop a real-time, optical flow-based gesture recognition system for human-robot interactions. In order to robustly estimate the right optical flow related to human gestures by the correlation-based technique, the following parameters must be selected appropriately in advance: the number of grid points, grid point intervals, search window size, pixel thinning rate, image sampling rate, and the size of correlation blocks. In our previous work (1999) these parameters were determined by the operator in a heuristic/empirical way. This paper presents a method to systematically select the local correlation parameters that ensure robust gesture recognition, which was not discussed in the previous study. We verified through various experiments that the combination of an optical flow-based gesture recognition technique with the proposed method can offer high recognition rates (overall 85% or more) for unspecific gesturers over a wide range of the gesturer-camera distance.","PeriodicalId":200240,"journal":{"name":"8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th IEEE International Workshop on Robot and Human Interaction. RO-MAN '99 (Cat. No.99TH8483)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1999.900337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a real-time, optical flow-based gesture recognition system for human-robot interactions. In order to robustly estimate the right optical flow related to human gestures by the correlation-based technique, the following parameters must be selected appropriately in advance: the number of grid points, grid point intervals, search window size, pixel thinning rate, image sampling rate, and the size of correlation blocks. In our previous work (1999) these parameters were determined by the operator in a heuristic/empirical way. This paper presents a method to systematically select the local correlation parameters that ensure robust gesture recognition, which was not discussed in the previous study. We verified through various experiments that the combination of an optical flow-based gesture recognition technique with the proposed method can offer high recognition rates (overall 85% or more) for unspecific gesturers over a wide range of the gesturer-camera distance.
基于光流的手势识别中局部相关参数的系统选择
我们开发了一个实时的、基于光流的人机交互手势识别系统。为了利用基于相关的技术稳健地估计出与人体手势相关的正确光流,必须事先选择合适的参数:网格点数、网格点间隔、搜索窗口大小、像素细化率、图像采样率和相关块大小。在我们之前的工作(1999)中,这些参数是由操作员以启发式/经验的方式确定的。本文提出了一种系统地选择局部相关参数以保证手势识别鲁棒性的方法,这是以往研究中没有讨论的问题。我们通过各种实验验证,基于光流的手势识别技术与所提出的方法相结合,可以在手势-相机距离的大范围内为非特定手势提供高识别率(总体85%或更高)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信