Maximum likelihood and robust G-music performance in K-distributed noise

Y. Abramovich, Ben A. Johnson, O. Besson
{"title":"Maximum likelihood and robust G-music performance in K-distributed noise","authors":"Y. Abramovich, Ben A. Johnson, O. Besson","doi":"10.1109/EUSIPCO.2015.7362687","DOIUrl":null,"url":null,"abstract":"For an antenna array input mixture of m point source signals in K-distributed noise, we compare DOA estimation delivered by Maximum Likelihood and the recently introduced Robust G-MUSIC (RG-MUSIC) technique. We demonstrate that similar to the Gaussian case, MLE is still superior to RG-MUSIC, especially within the so-called threshold region. This makes it possible to use the Expected Likelihood (EL) methodology to detect the presence of RG-MUSIC performance breakdown and \"cure\" those cases via an approach previously developed for the complex Gaussian circumstance.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For an antenna array input mixture of m point source signals in K-distributed noise, we compare DOA estimation delivered by Maximum Likelihood and the recently introduced Robust G-MUSIC (RG-MUSIC) technique. We demonstrate that similar to the Gaussian case, MLE is still superior to RG-MUSIC, especially within the so-called threshold region. This makes it possible to use the Expected Likelihood (EL) methodology to detect the presence of RG-MUSIC performance breakdown and "cure" those cases via an approach previously developed for the complex Gaussian circumstance.
k分布噪声中的极大似然和稳健G-music性能
对于k分布噪声下的m个点源信号的天线阵列输入混合,我们比较了最大似然法和最近引入的鲁棒G-MUSIC (RG-MUSIC)技术提供的DOA估计。我们证明了与高斯情况类似,MLE仍然优于RG-MUSIC,特别是在所谓的阈值区域内。这使得使用期望似然(EL)方法来检测RG-MUSIC性能崩溃的存在并通过先前为复杂高斯环境开发的方法“治愈”这些情况成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信