Localization System Through 2D LiDAR based Semantic Feature For Indoor Robot

Sanghyeon Bae, Sunghyeon Joo, J. Choi, HyunJi Park, Tae-Yong Kuc
{"title":"Localization System Through 2D LiDAR based Semantic Feature For Indoor Robot","authors":"Sanghyeon Bae, Sunghyeon Joo, J. Choi, HyunJi Park, Tae-Yong Kuc","doi":"10.1109/ur55393.2022.9826250","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a semantic feature extraction based on the light detection and ranging (LiDAR) sensor of an indoor driving robot and a location recognition method using the extracted features. After extracting semantic features based on the corner position and direction and shape of the corner for a wall or door in an indoor driving environment, and matching it with the corner information of the map, position recognition is performed using the collinearity method. It shows excellent performance with low computational complexity in embedded computers. We tested the proposed method in a real indoor environment using real robots and sensors. The performance of the location recognition system was verified by comparison with the widely used AMCL (Adaptive Monte Carlo Localization) algorithm.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ur55393.2022.9826250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a semantic feature extraction based on the light detection and ranging (LiDAR) sensor of an indoor driving robot and a location recognition method using the extracted features. After extracting semantic features based on the corner position and direction and shape of the corner for a wall or door in an indoor driving environment, and matching it with the corner information of the map, position recognition is performed using the collinearity method. It shows excellent performance with low computational complexity in embedded computers. We tested the proposed method in a real indoor environment using real robots and sensors. The performance of the location recognition system was verified by comparison with the widely used AMCL (Adaptive Monte Carlo Localization) algorithm.
基于二维激光雷达语义特征的室内机器人定位系统
在本文中,我们提出了一种基于室内驾驶机器人的光探测和测距(LiDAR)传感器的语义特征提取和利用提取的特征进行位置识别的方法。根据室内驾驶环境中墙或门的转角位置和转角方向形状提取语义特征,并与地图上的转角信息进行匹配,利用共线性方法进行位置识别。它在嵌入式计算机中表现出优异的性能和较低的计算复杂度。我们使用真实的机器人和传感器在真实的室内环境中测试了所提出的方法。通过与广泛应用的自适应蒙特卡罗定位算法(AMCL)的比较,验证了该定位系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信