Selective abstraction and stochastic methods for scalable power modelling of heterogeneous systems

A. Rafiev, Fei Xia, A. Iliasov, Rem Gensh, Ali Aalsaud, A. Romanovsky, A. Yakovlev
{"title":"Selective abstraction and stochastic methods for scalable power modelling of heterogeneous systems","authors":"A. Rafiev, Fei Xia, A. Iliasov, Rem Gensh, Ali Aalsaud, A. Romanovsky, A. Yakovlev","doi":"10.1109/FDL.2016.7880376","DOIUrl":null,"url":null,"abstract":"With the increase of system complexity in both platforms and applications, power modelling of heterogeneous systems is facing grand challenges from the model scalability issue. To address these challenges, this paper studies two systematic methods: selective abstraction and stochastic techniques. The concept of selective abstraction via black-boxing is realised using hierarchical modelling and cross-layer cuts, respecting the concepts of boxability and error contamination. The stochastic aspect is formally underpinned by Stochastic Activity Networks (SANs). The proposed method is validated with experimental results from Odroid XU3 heterogeneous 8-core platform and is demonstrated to maintain high accuracy while improving scalability.","PeriodicalId":137305,"journal":{"name":"2016 Forum on Specification and Design Languages (FDL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Forum on Specification and Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL.2016.7880376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the increase of system complexity in both platforms and applications, power modelling of heterogeneous systems is facing grand challenges from the model scalability issue. To address these challenges, this paper studies two systematic methods: selective abstraction and stochastic techniques. The concept of selective abstraction via black-boxing is realised using hierarchical modelling and cross-layer cuts, respecting the concepts of boxability and error contamination. The stochastic aspect is formally underpinned by Stochastic Activity Networks (SANs). The proposed method is validated with experimental results from Odroid XU3 heterogeneous 8-core platform and is demonstrated to maintain high accuracy while improving scalability.
异构系统可扩展功率建模的选择抽象和随机方法
随着平台和应用系统复杂性的增加,异构系统的功率建模面临着模型可扩展性问题的巨大挑战。为了解决这些问题,本文研究了两种系统的方法:选择性抽象和随机技术。通过黑盒的选择性抽象的概念是通过分层建模和跨层切割来实现的,同时尊重盒性和错误污染的概念。随机方面由随机活动网络(SANs)正式支持。基于Odroid XU3异构8核平台的实验结果表明,该方法在保持高精度的同时,提高了可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信