Investigations of Residual Damage in SiC Trench MOSFETs after Single and Multiple Short-Circuit Stress

Mitsuki Takahashi, H. Yano, N. Iwamuro, S. Harada
{"title":"Investigations of Residual Damage in SiC Trench MOSFETs after Single and Multiple Short-Circuit Stress","authors":"Mitsuki Takahashi, H. Yano, N. Iwamuro, S. Harada","doi":"10.1109/ISPSD57135.2023.10147463","DOIUrl":null,"url":null,"abstract":"This study investigated the residual damage to 1.2 kV SiC trench MOSFETs after being subjected to single or multiple short-circuit stress tests. The SiC trench MOSFETs showed higher gate leakage current ($I_{\\mathrm{G}}$) than $S$ iC planar MOSFETs with short-circuit transient. However, the SiC planar MOSFETs showed a large positive shift of the $I_{\\mathrm{D}}-V_{\\text{GS}}$ curve after single short-circuit stress tests despite lower $I_{\\mathrm{G}}$, while the $S$ iC trench MOSFETs with higher $I_{\\mathrm{G}}$ did not show such degradation. This could be caused by electrons trapped in the higher density oxide traps in the SiC planar MOSFETs during the single short-circuit stress tests regardless of the size of $I_{\\mathrm{G}}$. It was also found that multiple short-circuit stress tests to the $S$ iC trench MOSFETs did not affect $I_{\\mathrm{D}}-V_{\\text{GS}}$ stability. These results indicate that SiC trench MOSFETs have superior stability against short-circuit stress compared to SiC planar MOSFETs.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the residual damage to 1.2 kV SiC trench MOSFETs after being subjected to single or multiple short-circuit stress tests. The SiC trench MOSFETs showed higher gate leakage current ($I_{\mathrm{G}}$) than $S$ iC planar MOSFETs with short-circuit transient. However, the SiC planar MOSFETs showed a large positive shift of the $I_{\mathrm{D}}-V_{\text{GS}}$ curve after single short-circuit stress tests despite lower $I_{\mathrm{G}}$, while the $S$ iC trench MOSFETs with higher $I_{\mathrm{G}}$ did not show such degradation. This could be caused by electrons trapped in the higher density oxide traps in the SiC planar MOSFETs during the single short-circuit stress tests regardless of the size of $I_{\mathrm{G}}$. It was also found that multiple short-circuit stress tests to the $S$ iC trench MOSFETs did not affect $I_{\mathrm{D}}-V_{\text{GS}}$ stability. These results indicate that SiC trench MOSFETs have superior stability against short-circuit stress compared to SiC planar MOSFETs.
单次和多次短路应力作用下SiC沟槽mosfet的残余损伤研究
研究了1.2 kV SiC沟槽mosfet在单次或多次短路应力试验后的残余损伤。SiC沟槽mosfet具有更高的栅极漏电流($I_{\mathrm{G}}$),比S$ iC平面mosfet具有更高的短路瞬态。然而,SiC平面mosfet在单次短路应力测试后,尽管$I_{\ mathm {G}}$较低,但$I_{\ mathm {D}}-V_{\text{GS}}$曲线出现了较大的正移位,而$I_{\ mathm {G}}$较高的$S$ iC沟槽mosfet没有出现这种退化。这可能是由于在单次短路应力测试中,电子被捕获在SiC平面mosfet中高密度的氧化物陷阱中,而不管$I_{\math {G}}$的大小。同时发现,对$S$ iC沟槽mosfet进行多次短路应力测试并不影响$ i {\math {D}}-V_{\text{GS}}$的稳定性。这些结果表明,与SiC平面mosfet相比,SiC沟槽mosfet具有更好的抗短路应力稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信