Context Knowledge Extraction using Network Traffic Information

J. Aguilar, M. Jerez, Ángel Pinto, J. G. D. Mesa, E. Montoya
{"title":"Context Knowledge Extraction using Network Traffic Information","authors":"J. Aguilar, M. Jerez, Ángel Pinto, J. G. D. Mesa, E. Montoya","doi":"10.1109/CLEI56649.2022.9959904","DOIUrl":null,"url":null,"abstract":"A growing trend in information technology is not just reacting to changes, but anticipating them as much as possible. This paradigm is the base of modern applications, such as recommendation systems, the context-aware applications, among others. Anticipatory systems extend the idea to the communication systems, by studying patterns and periodicity in human behavior and network dynamic, to optimize the network performance. Particularly, for context-awareness applications is very important to extract autonomously contextual information. This work proposes a set of autonomic cycles of data analysis tasks to provide context awareness using the network traffic data, which gives information about the behavior of the traffic flow in a given context. This information about the network (links, users, type of traffic, etc.) is used to extract useful knowledge about the context using data analysis tasks.","PeriodicalId":156073,"journal":{"name":"2022 XVLIII Latin American Computer Conference (CLEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XVLIII Latin American Computer Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI56649.2022.9959904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A growing trend in information technology is not just reacting to changes, but anticipating them as much as possible. This paradigm is the base of modern applications, such as recommendation systems, the context-aware applications, among others. Anticipatory systems extend the idea to the communication systems, by studying patterns and periodicity in human behavior and network dynamic, to optimize the network performance. Particularly, for context-awareness applications is very important to extract autonomously contextual information. This work proposes a set of autonomic cycles of data analysis tasks to provide context awareness using the network traffic data, which gives information about the behavior of the traffic flow in a given context. This information about the network (links, users, type of traffic, etc.) is used to extract useful knowledge about the context using data analysis tasks.
基于网络流量信息的知识提取
信息技术的发展趋势不仅仅是对变化作出反应,而是尽可能地预测变化。这种范式是现代应用程序的基础,例如推荐系统、上下文感知应用程序等。预期系统通过研究人类行为和网络动态的模式和周期性,将这一思想扩展到通信系统,以优化网络性能。特别是对于上下文感知应用来说,自主地提取上下文信息是非常重要的。这项工作提出了一组数据分析任务的自主循环,以使用网络流量数据提供上下文感知,从而提供有关给定上下文中交通流行为的信息。这些关于网络的信息(链接、用户、流量类型等)用于使用数据分析任务提取有关上下文的有用知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信