Christian J. Dietrich, Stefan Naumann, Robin Thrift, D. Lohmann
{"title":"RT.js: Practical Real-Time Scheduling for Web Applications","authors":"Christian J. Dietrich, Stefan Naumann, Robin Thrift, D. Lohmann","doi":"10.1109/RTSS46320.2019.00017","DOIUrl":null,"url":null,"abstract":"For billions of deployed browsers, JavaScript provides the platform-independent lingua franca that enabled the triumphal march of web-based applications. Originally intended for simple UI-event processing, JavaScript comes with an event-driven programming model, where event-callback functions are executed in strict sequential order. However, with applications getting more complex and tasks becoming more computation intensive, its first-come-first-serve and run-to-completion semantic is hitting a limit, when reactions to user inputs are delayed beyond the human perception threshold. With the rise of the Internet of Things, this leads to friction-filled user experiences in everyday situations. With RT.js, we selectively introduce pseudo-preemption points into JavaScript functions and sequence the execution of event callbacks with well-known real-time scheduling policies, like EDF. Thereby, we provide a soft real-time abstraction that mitigates the described shortcomings of the JavaScript execution model without modifying the actual engine; making RT.js compatible with billions of devices. Applied to generated real-time task sets, we can almost eliminate the 30-percent deadline-miss ratios of baseline JavaScript at moderate costs. In a browser-based macro benchmark, we could diminish the influence of computation-intensive background tasks on the page-rendering performance.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For billions of deployed browsers, JavaScript provides the platform-independent lingua franca that enabled the triumphal march of web-based applications. Originally intended for simple UI-event processing, JavaScript comes with an event-driven programming model, where event-callback functions are executed in strict sequential order. However, with applications getting more complex and tasks becoming more computation intensive, its first-come-first-serve and run-to-completion semantic is hitting a limit, when reactions to user inputs are delayed beyond the human perception threshold. With the rise of the Internet of Things, this leads to friction-filled user experiences in everyday situations. With RT.js, we selectively introduce pseudo-preemption points into JavaScript functions and sequence the execution of event callbacks with well-known real-time scheduling policies, like EDF. Thereby, we provide a soft real-time abstraction that mitigates the described shortcomings of the JavaScript execution model without modifying the actual engine; making RT.js compatible with billions of devices. Applied to generated real-time task sets, we can almost eliminate the 30-percent deadline-miss ratios of baseline JavaScript at moderate costs. In a browser-based macro benchmark, we could diminish the influence of computation-intensive background tasks on the page-rendering performance.