Hereditary rigidity, separation and density: In memory of Professor I.G. Rosenberg

L. Haddad, M. Miyakawa, M. Pouzet, H. Tatsumi
{"title":"Hereditary rigidity, separation and density: In memory of Professor I.G. Rosenberg","authors":"L. Haddad, M. Miyakawa, M. Pouzet, H. Tatsumi","doi":"10.1109/ISMVL51352.2021.00020","DOIUrl":null,"url":null,"abstract":"We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Schölzel [1]. We observe that on a set <tex>$V$</tex> with <tex>$m$</tex> elements, there is a hereditarily rigid set <tex>$\\mathcal{R}$</tex> made of <tex>$n$</tex> tournaments if and only if <tex>$m(m-1)\\leq 2^{n}$</tex>. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let <tex>$h_{\\text{Lin}}(m)$</tex> be the least cardinal <tex>$n$</tex> such that there is a family <tex>$\\mathcal{R}$</tex> of <tex>$n$</tex> linear orders on an <tex>$m$</tex>-element set <tex>$V$</tex> such that any two distinct ordered pairs of distinct elements of <tex>$V$</tex> are separated by some member of <tex>$\\mathcal{R}$</tex>, then <tex>$[\\log_{2}(m(m-1))]\\leq h_{\\text{Lin}}(m)$</tex> with equality if <tex>$m\\leq 7$</tex>. We ask whether the equality holds for every <tex>$m$</tex>. We prove that <tex>$h_{\\text{Lin}}(m+1)\\leq h_{\\text{Lin}}(m)+1$</tex>. If <tex>$V$</tex> is infinite, we show that <tex>$h_{\\text{Lin}}(m)=\\aleph_{0}$</tex> for <tex>$m\\leq 2^{\\aleph_{0}}$</tex>. More generally, we prove that the two equalities <tex>$h_{\\text{Lin}}(m)=log_{2}(m)=d$</tex> (Lin <tex>$(V)$</tex>) hold, where <tex>$\\log_{2}(m)$</tex> is the least cardinal <tex>$\\mu$</tex> such that <tex>$m\\leq 2^{\\mu}$</tex>, and <tex>$d$</tex> (Lin <tex>$(V)$</tex>) is the topological density of the set Lin (V) of linear orders on <tex>$V$</tex> (viewed as a subset of the power set <tex>$\\mathcal{P}(V\\times V)$</tex> equipped with the product topology). These equalities follow from the Generalized Continuum Hypothesis, but we do not know whether they hold without any set theoretical hypothesis.","PeriodicalId":129346,"journal":{"name":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL51352.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Schölzel [1]. We observe that on a set $V$ with $m$ elements, there is a hereditarily rigid set $\mathcal{R}$ made of $n$ tournaments if and only if $m(m-1)\leq 2^{n}$. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let $h_{\text{Lin}}(m)$ be the least cardinal $n$ such that there is a family $\mathcal{R}$ of $n$ linear orders on an $m$-element set $V$ such that any two distinct ordered pairs of distinct elements of $V$ are separated by some member of $\mathcal{R}$, then $[\log_{2}(m(m-1))]\leq h_{\text{Lin}}(m)$ with equality if $m\leq 7$. We ask whether the equality holds for every $m$. We prove that $h_{\text{Lin}}(m+1)\leq h_{\text{Lin}}(m)+1$. If $V$ is infinite, we show that $h_{\text{Lin}}(m)=\aleph_{0}$ for $m\leq 2^{\aleph_{0}}$. More generally, we prove that the two equalities $h_{\text{Lin}}(m)=log_{2}(m)=d$ (Lin $(V)$) hold, where $\log_{2}(m)$ is the least cardinal $\mu$ such that $m\leq 2^{\mu}$, and $d$ (Lin $(V)$) is the topological density of the set Lin (V) of linear orders on $V$ (viewed as a subset of the power set $\mathcal{P}(V\times V)$ equipped with the product topology). These equalities follow from the Generalized Continuum Hypothesis, but we do not know whether they hold without any set theoretical hypothesis.
遗传刚性,分离和密度:纪念I.G.罗森伯格教授
我们继续研究始于Couceiro、Haddad、Pouzet和Schölzel[1]的遗传刚性关系系统。我们在一个集合上观察到 $V$ 有 $m$ 元素,有一个遗传的刚性集合 $\mathcal{R}$ 由…制成 $n$ 比赛当且仅当 $m(m-1)\leq 2^{n}$. 我们要问的是,当比赛被线性顺序取代时,同样的不等式是否成立。这个问题有一个关于线性阶分离的等价公式。让 $h_{\text{Lin}}(m)$ 做最小的基数 $n$ 这样就有了一个家庭 $\mathcal{R}$ 的 $n$ 上的线性阶 $m$-元素集 $V$ 使得任意两个不同的有序对的不同元素 $V$ 被某个元素分隔开 $\mathcal{R}$那么, $[\log_{2}(m(m-1))]\leq h_{\text{Lin}}(m)$ 与之相等 $m\leq 7$. 我们问这个等式是否对每一个都成立 $m$. 我们证明 $h_{\text{Lin}}(m+1)\leq h_{\text{Lin}}(m)+1$. 如果 $V$ 是无限的,我们证明了吗 $h_{\text{Lin}}(m)=\aleph_{0}$ 为了 $m\leq 2^{\aleph_{0}}$. 更一般地说,我们证明了这两个等式 $h_{\text{Lin}}(m)=log_{2}(m)=d$ (林 $(V)$) hold, hold $\log_{2}(m)$ 是最小基数 $\mu$ 这样 $m\leq 2^{\mu}$,和 $d$ (林 $(V)$)为上线性阶的集合Lin (V)的拓扑密度 $V$ (被看作是幂集的子集) $\mathcal{P}(V\times V)$ 配备产品拓扑结构)。这些等式是从广义连续统假设推导出来的,但我们不知道在没有任何理论假设的情况下它们是否成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信