{"title":"End-to-end learning for lane keeping of self-driving cars","authors":"Zhilu Chen, Xinming Huang","doi":"10.1109/IVS.2017.7995975","DOIUrl":null,"url":null,"abstract":"Lane keeping is an important feature for self-driving cars. This paper presents an end-to-end learning approach to obtain the proper steering angle to maintain the car in the lane. The convolutional neural network (CNN) model takes raw image frames as input and outputs the steering angles accordingly. The model is trained and evaluated using the comma.ai dataset, which contains the front view image frames and the steering angle data captured when driving on the road. Unlike the traditional approach that manually decomposes the autonomous driving problem into technical components such as lane detection, path planning and steering control, the end-to-end model can directly steer the vehicle from the front view camera data after training. It learns how to keep in lane from human driving data. Further discussion of this end-to-end approach and its limitation are also provided.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175
Abstract
Lane keeping is an important feature for self-driving cars. This paper presents an end-to-end learning approach to obtain the proper steering angle to maintain the car in the lane. The convolutional neural network (CNN) model takes raw image frames as input and outputs the steering angles accordingly. The model is trained and evaluated using the comma.ai dataset, which contains the front view image frames and the steering angle data captured when driving on the road. Unlike the traditional approach that manually decomposes the autonomous driving problem into technical components such as lane detection, path planning and steering control, the end-to-end model can directly steer the vehicle from the front view camera data after training. It learns how to keep in lane from human driving data. Further discussion of this end-to-end approach and its limitation are also provided.