Volterra Filter for Dynamic Image Sequences

M. B. Meenavathi, K. Rajesh
{"title":"Volterra Filter for Dynamic Image Sequences","authors":"M. B. Meenavathi, K. Rajesh","doi":"10.1109/SITIS.2008.79","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method based on Volterra series for filtering image sequences. The proposed filter uses the dynamic characteristics of truncated volterra series. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median or rank operators deal only with impulse noise and fail to cancel the Gaussian distributed noise. The proposed filter effectively attenuates Gaussian and mixed Gaussian-Impulse noise and preserves the edges much better than the methods using Median Filter (MF), Wiener Filter (WF) or Kalman Filter (KF).","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new method based on Volterra series for filtering image sequences. The proposed filter uses the dynamic characteristics of truncated volterra series. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median or rank operators deal only with impulse noise and fail to cancel the Gaussian distributed noise. The proposed filter effectively attenuates Gaussian and mixed Gaussian-Impulse noise and preserves the edges much better than the methods using Median Filter (MF), Wiener Filter (WF) or Kalman Filter (KF).
动态图像序列的Volterra滤波器
本文提出了一种基于Volterra级数的图像序列滤波方法。该滤波器利用截断伏特拉串的动态特性。一般来说,线性滤波器可以减少噪声,使边缘模糊。一些基于中值算子或秩算子的非线性滤波器只能处理脉冲噪声而不能消除高斯分布噪声。与中值滤波(MF)、维纳滤波(WF)和卡尔曼滤波(KF)相比,该滤波器能有效地衰减高斯噪声和混合高斯脉冲噪声,并能更好地保留边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信