K. Manabe, K. Masuzaki, T. Ogura, T. Nakagawa, M. Saitoh, H. Sunamura, T. Tatsumi, H. Watanabe
{"title":"Single metal/single dielectric gate stack realizing triple effective workfunction for embedded memory application","authors":"K. Manabe, K. Masuzaki, T. Ogura, T. Nakagawa, M. Saitoh, H. Sunamura, T. Tatsumi, H. Watanabe","doi":"10.1109/VLSIT.2008.4588558","DOIUrl":null,"url":null,"abstract":"We demonstrate midgap and band-edge effective workfunctions (EWFs) control with simple metal gate process scheme (single metal gate/single gate dielectric), using impurity-segregated NiSi2/SiON structure for embedded memory application. The application of midgap and band-edge EWF enables us to lower power consumption in SRAM and logic devices by 30% and 15% compared to poly-Si devices, respectively, due to reduced channel impurity concentration, suppressed gate depletion and high carrier mobility. These results show that NiSi2/SiON stack is one of the most promising candidates for future system on chip (SoC) devices with embedded memory.","PeriodicalId":173781,"journal":{"name":"2008 Symposium on VLSI Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2008.4588558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We demonstrate midgap and band-edge effective workfunctions (EWFs) control with simple metal gate process scheme (single metal gate/single gate dielectric), using impurity-segregated NiSi2/SiON structure for embedded memory application. The application of midgap and band-edge EWF enables us to lower power consumption in SRAM and logic devices by 30% and 15% compared to poly-Si devices, respectively, due to reduced channel impurity concentration, suppressed gate depletion and high carrier mobility. These results show that NiSi2/SiON stack is one of the most promising candidates for future system on chip (SoC) devices with embedded memory.