Energy-efficient vision on the PULP platform for ultra-low power parallel computing

Francesco Conti, D. Rossi, A. Pullini, Igor Loi, L. Benini
{"title":"Energy-efficient vision on the PULP platform for ultra-low power parallel computing","authors":"Francesco Conti, D. Rossi, A. Pullini, Igor Loi, L. Benini","doi":"10.1109/SiPS.2014.6986099","DOIUrl":null,"url":null,"abstract":"Many-core architectures structured as fabrics of tightly-coupled clusters have shown promising results on embedded computer vision benchmarks, providing state-of-art performance with a reduced power budget. We propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTB FD-SOI 28nm technology. As a use case for PULP, we show that a computationally demanding vision kernel based on Convolutional Neural Networks can be quickly and efficiently switched from a low power, low frame-rate operating point to a high frame-rate one when a detection is performed. Our results show that PULP performance can be scaled over a 1x-354x range, with a peak performance/power efficiency of 211 GOPS/W.","PeriodicalId":167156,"journal":{"name":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2014.6986099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Many-core architectures structured as fabrics of tightly-coupled clusters have shown promising results on embedded computer vision benchmarks, providing state-of-art performance with a reduced power budget. We propose PULP (Parallel processing Ultra-Low Power platform), an architecture built on clusters of tightly-coupled OpenRISC ISA cores, with advanced techniques for fast performance and energy scalability that exploit the capabilities of the STMicroelectronics UTB FD-SOI 28nm technology. As a use case for PULP, we show that a computationally demanding vision kernel based on Convolutional Neural Networks can be quickly and efficiently switched from a low power, low frame-rate operating point to a high frame-rate one when a detection is performed. Our results show that PULP performance can be scaled over a 1x-354x range, with a peak performance/power efficiency of 211 GOPS/W.
超低功耗并行计算的PULP平台节能愿景
作为紧密耦合集群结构的许多核心架构在嵌入式计算机视觉基准测试中显示出有希望的结果,以更低的功耗预算提供了最先进的性能。我们提出了PULP (Parallel processing Ultra-Low Power platform,并行处理超低功耗平台),这是一种建立在紧密耦合的OpenRISC ISA内核集群上的架构,具有利用意法半导体UTB FD-SOI 28nm技术实现快速性能和能量可扩展性的先进技术。作为PULP的一个用例,我们证明了基于卷积神经网络的计算要求高的视觉内核可以在执行检测时快速有效地从低功耗、低帧率的工作点切换到高帧率的工作点。我们的研究结果表明,PULP的性能可以在1 -354倍的范围内扩展,峰值性能/功率效率为211 GOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信