Vibrometry-based vehicle identification framework using nonlinear autoregressive neural networks and decision fusion

Marc R. Ward, Trevor J. Bihl, K. Bauer
{"title":"Vibrometry-based vehicle identification framework using nonlinear autoregressive neural networks and decision fusion","authors":"Marc R. Ward, Trevor J. Bihl, K. Bauer","doi":"10.1109/NAECON.2014.7045799","DOIUrl":null,"url":null,"abstract":"This research considers simulated laser radar (LADAR) vibrometry for vehicle identification. Time sampled data is considered for developing multiple nonlinear autoregressive neural network (NARNet) classifier models. Emphasis is placed on robustness to sensor location and using small amounts of data. Decision level fusion is used to combine results from multiple classifiers. Results offer improved classification performance as compared to the literature.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This research considers simulated laser radar (LADAR) vibrometry for vehicle identification. Time sampled data is considered for developing multiple nonlinear autoregressive neural network (NARNet) classifier models. Emphasis is placed on robustness to sensor location and using small amounts of data. Decision level fusion is used to combine results from multiple classifiers. Results offer improved classification performance as compared to the literature.
基于振动测量的非线性自回归神经网络和决策融合的车辆识别框架
本研究采用模拟激光雷达(LADAR)振动法进行车辆识别。在建立多个非线性自回归神经网络(NARNet)分类器模型时,考虑了时间采样数据。重点放在对传感器位置的鲁棒性和使用少量数据。决策级融合用于组合来自多个分类器的结果。与文献相比,结果提供了改进的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信