Product of Periodic Groups

B. Razzaghmaneshi
{"title":"Product of Periodic Groups","authors":"B. Razzaghmaneshi","doi":"10.36346/sarjet.2019.v01i01.002","DOIUrl":null,"url":null,"abstract":": A group G is called radicable if for each element x of G and for each positive integer n there exists an element y of G such that x=y n . A group G is reduced if it has no non-trivial radicable subgroups. Let the hyper-((locally nilpotent) or finte) group G=AB be the product of two periodic hyper-(abelian or finite) subgroups A and B. Then the following hold: (i) G is periodic. (ii) If the Sylow p-subgroups of A and B are Chernikov (respectively: finite, trivial), then the p-component of every abelian normal section of G is Chernikov (respectively: finite, trivial).","PeriodicalId":185348,"journal":{"name":"South Asian Research Journal of Engineering and Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Asian Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36346/sarjet.2019.v01i01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: A group G is called radicable if for each element x of G and for each positive integer n there exists an element y of G such that x=y n . A group G is reduced if it has no non-trivial radicable subgroups. Let the hyper-((locally nilpotent) or finte) group G=AB be the product of two periodic hyper-(abelian or finite) subgroups A and B. Then the following hold: (i) G is periodic. (ii) If the Sylow p-subgroups of A and B are Chernikov (respectively: finite, trivial), then the p-component of every abelian normal section of G is Chernikov (respectively: finite, trivial).
周期群的积
如果对于G的每一个元素x和每一个正整数n, G中存在一个元素y使x=y n,则称群G为可根除的。如果群G没有非平凡可根子群,则群G是约简的。设超-(局部幂零的)或有限的)群G=AB是两个周期超-(阿贝的或有限的)子群A和b的乘积,则成立:(i) G是周期的。(ii)如果A和B的Sylow p子群是Chernikov(分别:有限的,平凡的),则G的每个阿贝尔正规截面的p分量是Chernikov(分别:有限的,平凡的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信