Implementing the conjugate gradient algorithm on multi-core systems

Wouter Wiggers, V. Bakker, A. Kokkeler, G. Smit
{"title":"Implementing the conjugate gradient algorithm on multi-core systems","authors":"Wouter Wiggers, V. Bakker, A. Kokkeler, G. Smit","doi":"10.1109/ISSOC.2007.4427436","DOIUrl":null,"url":null,"abstract":"In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes in the order of hours on desktop computers. Our goal was to speed up the conjugate gradient solver. In this paper we present the results of applying multiple optimization techniques and exploiting multi-core solutions offered by two recently introduced architectures: Intel's Woodcrest general purpose processor and NVIDIA's G80 graphical processing unit. Using these techniques for these architectures, a speedup of a factor three has been achieved.","PeriodicalId":244119,"journal":{"name":"2007 International Symposium on System-on-Chip","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on System-on-Chip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSOC.2007.4427436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes in the order of hours on desktop computers. Our goal was to speed up the conjugate gradient solver. In this paper we present the results of applying multiple optimization techniques and exploiting multi-core solutions offered by two recently introduced architectures: Intel's Woodcrest general purpose processor and NVIDIA's G80 graphical processing unit. Using these techniques for these architectures, a speedup of a factor three has been achieved.
共轭梯度算法在多核系统上的实现
在线性求解中,如共轭梯度算法,稀疏矩阵向量乘法是一个重要的核心。由于矩阵的稀疏性,求解器运行相对较慢。对于数字光学层析成像(DOT),需要求解大量的线性方程,目前在台式计算机上需要花费数小时。我们的目标是加快共轭梯度求解器的速度。在本文中,我们展示了应用多种优化技术和利用两种最近推出的架构提供的多核解决方案的结果:英特尔的Woodcrest通用处理器和NVIDIA的G80图形处理单元。在这些体系结构中使用这些技术,可以实现三倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信