Split-Et-Impera: A Framework for the Design of Distributed Deep Learning Applications

Luigi Capogrosso, Federico Cunico, M. Lora, M. Cristani, F. Fummi, D. Quaglia
{"title":"Split-Et-Impera: A Framework for the Design of Distributed Deep Learning Applications","authors":"Luigi Capogrosso, Federico Cunico, M. Lora, M. Cristani, F. Fummi, D. Quaglia","doi":"10.1109/DDECS57882.2023.10139711","DOIUrl":null,"url":null,"abstract":"Many recent pattern recognition applications rely on complex distributed architectures in which sensing and computational nodes interact together through a communication network. Deep neural networks (DNNs) play an important role in this scenario, furnishing powerful decision mechanisms, at the price of a high computational effort. Consequently, powerful state-of-the-art DNNs are frequently split over various computational nodes, e.g., a first part stays on an embedded device and the rest on a server. Deciding where to split a DNN is a challenge in itself, making the design of deep learning applications even more complicated. Therefore, we propose Split-Et-Impera, a novel and practical framework that i) determines the set of the best-split points of a neural network based on deep network interpretability principles without performing a tedious try-and-test approach, ii) performs a communication-aware simulation for the rapid evaluation of different neural network rearrangements, and iii) suggests the best match between the quality of service requirements of the application and the performance in terms of accuracy and latency time.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many recent pattern recognition applications rely on complex distributed architectures in which sensing and computational nodes interact together through a communication network. Deep neural networks (DNNs) play an important role in this scenario, furnishing powerful decision mechanisms, at the price of a high computational effort. Consequently, powerful state-of-the-art DNNs are frequently split over various computational nodes, e.g., a first part stays on an embedded device and the rest on a server. Deciding where to split a DNN is a challenge in itself, making the design of deep learning applications even more complicated. Therefore, we propose Split-Et-Impera, a novel and practical framework that i) determines the set of the best-split points of a neural network based on deep network interpretability principles without performing a tedious try-and-test approach, ii) performs a communication-aware simulation for the rapid evaluation of different neural network rearrangements, and iii) suggests the best match between the quality of service requirements of the application and the performance in terms of accuracy and latency time.
Split-Et-Impera:分布式深度学习应用程序设计框架
许多最近的模式识别应用依赖于复杂的分布式架构,其中感知和计算节点通过通信网络相互作用。深度神经网络(dnn)在这种情况下发挥了重要作用,以高计算量为代价提供了强大的决策机制。因此,强大的最先进的深度神经网络经常被分割到不同的计算节点上,例如,第一部分留在嵌入式设备上,其余部分留在服务器上。决定在哪里分割DNN本身就是一个挑战,这使得深度学习应用程序的设计变得更加复杂。因此,我们提出了Split-Et-Impera,这是一个新颖实用的框架,它i)根据深度网络可解释性原则确定神经网络的最佳分裂点集,而无需执行繁琐的尝试和测试方法,ii)执行通信感知模拟,用于快速评估不同的神经网络重排。iii)表示应用程序的服务质量要求与性能在准确性和延迟时间方面的最佳匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信