Backtracking Optimized DDG Directed Scheduling Algorithm for Clustered VLIW Architectures

Yang Xu, Tang Zhizhong, Guo Deyuan, H. Hu
{"title":"Backtracking Optimized DDG Directed Scheduling Algorithm for Clustered VLIW Architectures","authors":"Yang Xu, Tang Zhizhong, Guo Deyuan, H. Hu","doi":"10.1109/ICFCSA.2011.25","DOIUrl":null,"url":null,"abstract":"This work presents an instruction schedule approach to improve the performance of clustered VLIW architectures. The proposed scheme is based on a preliminary scheduling phase directed though analyzing of Data Dependence Graph (DDG) and a backtracking optimization scheduling phase bringing further improvement by balancing the workloads through clusters and minimizing the penalties of inter-cluster data communications simultaneously. We have implemented and evaluated the proposed scheme with UTDSP benchmarks. Results show a significant speed-up in performance. The speedup can up to 38.58%, with average speedup ranging from 23.91% (2-Clusters) to up to 26.78% (4-Clusters).","PeriodicalId":141108,"journal":{"name":"2011 International Conference on Future Computer Sciences and Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Future Computer Sciences and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFCSA.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents an instruction schedule approach to improve the performance of clustered VLIW architectures. The proposed scheme is based on a preliminary scheduling phase directed though analyzing of Data Dependence Graph (DDG) and a backtracking optimization scheduling phase bringing further improvement by balancing the workloads through clusters and minimizing the penalties of inter-cluster data communications simultaneously. We have implemented and evaluated the proposed scheme with UTDSP benchmarks. Results show a significant speed-up in performance. The speedup can up to 38.58%, with average speedup ranging from 23.91% (2-Clusters) to up to 26.78% (4-Clusters).
集群VLIW体系结构的回溯优化DDG定向调度算法
本文提出了一种指令调度方法来提高集群VLIW体系结构的性能。该方案基于通过分析数据依赖图(DDG)指导的初步调度阶段和回溯优化调度阶段,通过通过集群平衡工作负载并同时最小化集群间数据通信的惩罚来进一步改进。我们已经使用UTDSP基准测试实现和评估了提议的方案。结果显示性能有了显著的提高。加速率最高可达38.58%,平均加速率从23.91%(2集群)到26.78%(4集群)不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信