Accelerating maximum likelihood estimation for Hawkes point processes

Ce Guo, W. Luk
{"title":"Accelerating maximum likelihood estimation for Hawkes point processes","authors":"Ce Guo, W. Luk","doi":"10.1109/FPL.2013.6645502","DOIUrl":null,"url":null,"abstract":"Hawkes processes are point processes that can be used to build probabilistic models to describe and predict occurrence patterns of random events. They are widely used in high-frequency trading, seismic analysis and neuroscience. A critical numerical calculation in Hawkes process models is parameter estimation, which is used to fit a Hawkes process model to a data set. The parameter estimation problem can be solved by searching for a parameter set that maximises the log-likelihood. A core operation of this search process, the log-likelihood evaluation, is computationally demanding if the number of data points is large. To accelerate the computation, we present a log-likelihood evaluation strategy which is suitable for hardware acceleration. We then design and optimise a pipelined engine based on our proposed strategy. In the experiments, an FPGA-based implementation of the proposed engine is shown to be up to 72 times faster than a single-core CPU, and 10 times faster than an 8-core CPU.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Hawkes processes are point processes that can be used to build probabilistic models to describe and predict occurrence patterns of random events. They are widely used in high-frequency trading, seismic analysis and neuroscience. A critical numerical calculation in Hawkes process models is parameter estimation, which is used to fit a Hawkes process model to a data set. The parameter estimation problem can be solved by searching for a parameter set that maximises the log-likelihood. A core operation of this search process, the log-likelihood evaluation, is computationally demanding if the number of data points is large. To accelerate the computation, we present a log-likelihood evaluation strategy which is suitable for hardware acceleration. We then design and optimise a pipelined engine based on our proposed strategy. In the experiments, an FPGA-based implementation of the proposed engine is shown to be up to 72 times faster than a single-core CPU, and 10 times faster than an 8-core CPU.
霍克斯点过程的加速极大似然估计
霍克斯过程是点过程,可以用来建立概率模型来描述和预测随机事件的发生模式。它们被广泛应用于高频交易、地震分析和神经科学。Hawkes过程模型中一个关键的数值计算是参数估计,它用于将Hawkes过程模型拟合到数据集上。参数估计问题可以通过搜索使对数似然最大化的参数集来解决。如果数据点的数量很大,这个搜索过程的核心操作,即对数似然评估,在计算上要求很高。为了加快计算速度,我们提出了一种适合硬件加速的对数似然评估策略。然后,基于我们提出的策略,我们设计并优化了一个流水线引擎。在实验中,基于fpga的引擎实现比单核CPU快72倍,比8核CPU快10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信