J. Konle, H. Presting, U. Konig, V. Starkov, A. Vyatkin
{"title":"Nano-sized pore formation in p-type silicon for automotive applications","authors":"J. Konle, H. Presting, U. Konig, V. Starkov, A. Vyatkin","doi":"10.1109/NANO.2002.1032288","DOIUrl":null,"url":null,"abstract":"Self-organized electrochemical etching of p-type silicon (Si) has been used to study random micropore formation which produces porous Si structures with nanometer well thickness. The density of micropores, i.e. the porosity, can be varied in a wide range by choice of the substrate doping level. Surface enlargement up to a factor of 10000 and more can be easily achieved by choice of appropriate conditions in the anodic etch process. In addition, we demonstrate deep anodic etching (DAE) of a pinhole array in Si by lithographic pre-patterning and subsequent etch using potassium hydroxide (KOH). The Si wafer is then anodically etched which produces deep channels, thus creating porous structures with enlarged surface. Such channels have large application potential as a carrier structure for the catalyst in micro-steam fuel reformers in compact fuel cells used as auxiliary power units for the on-board electronics in vehicles or can be used for fuel injection or fuel heating systems.","PeriodicalId":408575,"journal":{"name":"Proceedings of the 2nd IEEE Conference on Nanotechnology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IEEE Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2002.1032288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Self-organized electrochemical etching of p-type silicon (Si) has been used to study random micropore formation which produces porous Si structures with nanometer well thickness. The density of micropores, i.e. the porosity, can be varied in a wide range by choice of the substrate doping level. Surface enlargement up to a factor of 10000 and more can be easily achieved by choice of appropriate conditions in the anodic etch process. In addition, we demonstrate deep anodic etching (DAE) of a pinhole array in Si by lithographic pre-patterning and subsequent etch using potassium hydroxide (KOH). The Si wafer is then anodically etched which produces deep channels, thus creating porous structures with enlarged surface. Such channels have large application potential as a carrier structure for the catalyst in micro-steam fuel reformers in compact fuel cells used as auxiliary power units for the on-board electronics in vehicles or can be used for fuel injection or fuel heating systems.