{"title":"Oil-free stress impedance pressure sensor for harsh environment","authors":"A. Zribi, L. Iorio, D. J. Lewis","doi":"10.1109/ICSENS.2005.1597939","DOIUrl":null,"url":null,"abstract":"We report on the design, fabrication and demonstration of a pressure sensor using a magnetic material strain gauge. The gauge consists of a soft magnetic thin foil or ribbon patterned in various geometries. It is attached to machined stainless steel diaphragm by means of an adhesive layer. Upon application of pressure to the diaphragm, strain develops in the magnetic gauge leading to a change in its impedance phase and amplitude, which are measured and correlated to pressure. The sensor demonstrated high sensitivity (4 10-5 degrees/Pa in phase angle and 5.4 10-5 Ohm/Pa in amplitude) and low hysteresis (0.26% in phase angle, 0.03% in amplitude). Compared to piezoresistive strain gauges, the magnetic gauge provides approximately 5times to 9times improvement in strain gauge factor. In addition to higher performance, the magnetic pressure sensor is an attractive alternative to silicon-micromachined sensors for harsh environment high-pressure sensors","PeriodicalId":119985,"journal":{"name":"IEEE Sensors, 2005.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2005.1597939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We report on the design, fabrication and demonstration of a pressure sensor using a magnetic material strain gauge. The gauge consists of a soft magnetic thin foil or ribbon patterned in various geometries. It is attached to machined stainless steel diaphragm by means of an adhesive layer. Upon application of pressure to the diaphragm, strain develops in the magnetic gauge leading to a change in its impedance phase and amplitude, which are measured and correlated to pressure. The sensor demonstrated high sensitivity (4 10-5 degrees/Pa in phase angle and 5.4 10-5 Ohm/Pa in amplitude) and low hysteresis (0.26% in phase angle, 0.03% in amplitude). Compared to piezoresistive strain gauges, the magnetic gauge provides approximately 5times to 9times improvement in strain gauge factor. In addition to higher performance, the magnetic pressure sensor is an attractive alternative to silicon-micromachined sensors for harsh environment high-pressure sensors