Multi-machine fuzzy logic excitation and governor stabilizers design using genetic algorithms

F. Mayouf, F. Djahli, A. Mayouf, T. Devers
{"title":"Multi-machine fuzzy logic excitation and governor stabilizers design using genetic algorithms","authors":"F. Mayouf, F. Djahli, A. Mayouf, T. Devers","doi":"10.1109/EEEIC-2.2013.6737932","DOIUrl":null,"url":null,"abstract":"In this paper, we have extended to the multimachine case our developed control model for SMIB stability improvement previously published. This model implements the fuzzy stabilizer in excitation and/or in turbine Governor systems (FLCE, FLCG and FLCEG). The optimal adjustment of the fuzzy logic controllers using genetic algorithm is carried out. Results obtained by nonlinear simulation using Matlab/Simulink of a multimachine system show the effectiveness of using both fuzzy controllers to exciter (FLCE) and to governor (FLCG) at the same time (FLCEG) for large and small disturbances.","PeriodicalId":445295,"journal":{"name":"2013 13th International Conference on Environment and Electrical Engineering (EEEIC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Environment and Electrical Engineering (EEEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC-2.2013.6737932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we have extended to the multimachine case our developed control model for SMIB stability improvement previously published. This model implements the fuzzy stabilizer in excitation and/or in turbine Governor systems (FLCE, FLCG and FLCEG). The optimal adjustment of the fuzzy logic controllers using genetic algorithm is carried out. Results obtained by nonlinear simulation using Matlab/Simulink of a multimachine system show the effectiveness of using both fuzzy controllers to exciter (FLCE) and to governor (FLCG) at the same time (FLCEG) for large and small disturbances.
用遗传算法设计多机模糊逻辑激励和调速器稳定器
在本文中,我们将先前发表的SMIB稳定性改进控制模型扩展到多机情况。该模型在励磁和/或汽轮机调节系统(FLCE、FLCG和FLCEG)中实现模糊稳定器。采用遗传算法对模糊控制器进行最优调整。利用Matlab/Simulink对多机系统进行了非线性仿真,结果表明,对于大小扰动,模糊控制器同时用于激励器(FLCE)和调节器(FLCG)是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信