Building a Large Dataset for Model-based QoE Prediction in the Mobile Environment

Lamine Amour, Sami Souihi, S. Hoceini, A. Mellouk
{"title":"Building a Large Dataset for Model-based QoE Prediction in the Mobile Environment","authors":"Lamine Amour, Sami Souihi, S. Hoceini, A. Mellouk","doi":"10.1145/2811587.2811631","DOIUrl":null,"url":null,"abstract":"The tremendous growth in video services, specially in the context of mobile usage, creates new challenges for network service providers: How to enhance the user's Quality of Experience (QoE) in dynamic wireless networks (UMTS, HSPA, LTE/LTE-A). The network operators use different methods to predict the user's QoE. Generally to predict the user's QoE, methods are based on collecting subjective QoE scores given by users. Basically, these approaches need a large dataset to predict a good perceived quality of the service. In this paper, we setup an experimental test based on crowdsourcing approach and we build a large dataset in order to predict the user's QoE in mobile environment in term of Mean Opinion Score (MOS). The main objective of this study is to measure the individual/global impact of QoE Influence Factors (QoE IFs) in a real environment. Based on the collective dataset, we perform 5 testing scenarios to compare 2 estimation methods (SVM and ANFIS) to study the impact of the number of the considered parameters on the estimation. It became clear that using more parameters without any weighing mechanisms can produce bad results.","PeriodicalId":371317,"journal":{"name":"Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2811587.2811631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The tremendous growth in video services, specially in the context of mobile usage, creates new challenges for network service providers: How to enhance the user's Quality of Experience (QoE) in dynamic wireless networks (UMTS, HSPA, LTE/LTE-A). The network operators use different methods to predict the user's QoE. Generally to predict the user's QoE, methods are based on collecting subjective QoE scores given by users. Basically, these approaches need a large dataset to predict a good perceived quality of the service. In this paper, we setup an experimental test based on crowdsourcing approach and we build a large dataset in order to predict the user's QoE in mobile environment in term of Mean Opinion Score (MOS). The main objective of this study is to measure the individual/global impact of QoE Influence Factors (QoE IFs) in a real environment. Based on the collective dataset, we perform 5 testing scenarios to compare 2 estimation methods (SVM and ANFIS) to study the impact of the number of the considered parameters on the estimation. It became clear that using more parameters without any weighing mechanisms can produce bad results.
移动环境下基于模型的QoE预测大数据集构建
视频业务的巨大增长,特别是在移动使用的背景下,给网络服务提供商带来了新的挑战:如何在动态无线网络(UMTS、HSPA、LTE/LTE- a)中提高用户的体验质量(QoE)。网络运营商使用不同的方法来预测用户的QoE。一般预测用户的QoE的方法是基于收集用户给出的主观QoE分数。基本上,这些方法需要一个大的数据集来预测服务的良好感知质量。在本文中,我们建立了一个基于众包方法的实验测试,并建立了一个大型数据集,以平均意见得分(Mean Opinion Score, MOS)来预测移动环境下用户的QoE。本研究的主要目的是在真实环境中测量质量质量影响因子(QoE IFs)的个体/整体影响。基于集合数据集,我们执行了5个测试场景,比较两种估计方法(SVM和ANFIS),研究考虑参数数量对估计的影响。很明显,在没有任何权衡机制的情况下使用更多的参数可能会产生不好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信