SCALABILITY OF BIO-HEURISTICS FOR MULTIDIMENSIONAL OPTIMIZATION PROBLEMS

S. Rodzin, O. Rodzina
{"title":"SCALABILITY OF BIO-HEURISTICS FOR MULTIDIMENSIONAL OPTIMIZATION PROBLEMS","authors":"S. Rodzin, O. Rodzina","doi":"10.47501/itnou.2021.1.08-14","DOIUrl":null,"url":null,"abstract":"A scalable bio-heuristic algorithm capable of solving multidimensional optimization problems is proposed. Special operators are used to support the diversity of the solution population, to expand the search area for solutions at the expense of less promising solutions. The efficiency of the proposed algorithm is evaluated on a set of multidimensional functions of Grivank, Rastrigin, Rosenbrock, and Schwefel. The indicators of the developed algorithm are com-pared with those of competing algorithms.","PeriodicalId":447096,"journal":{"name":"ITNOU: Information technologies in science, education and management","volume":"104 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITNOU: Information technologies in science, education and management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47501/itnou.2021.1.08-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A scalable bio-heuristic algorithm capable of solving multidimensional optimization problems is proposed. Special operators are used to support the diversity of the solution population, to expand the search area for solutions at the expense of less promising solutions. The efficiency of the proposed algorithm is evaluated on a set of multidimensional functions of Grivank, Rastrigin, Rosenbrock, and Schwefel. The indicators of the developed algorithm are com-pared with those of competing algorithms.
多维优化问题的生物启发式可扩展性
提出了一种求解多维优化问题的可扩展生物启发式算法。特殊运算符用于支持解种群的多样性,以牺牲不太有希望的解为代价扩大解的搜索区域。在Grivank, Rastrigin, Rosenbrock和Schwefel的一组多维函数上评估了该算法的效率。并将该算法的指标与竞争算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信