Visually Grounded Interpretation of Noun-Noun Compounds in English

Inga Lang, Lonneke van der Plas, M. Nissim, Albert Gatt
{"title":"Visually Grounded Interpretation of Noun-Noun Compounds in English","authors":"Inga Lang, Lonneke van der Plas, M. Nissim, Albert Gatt","doi":"10.18653/v1/2022.cmcl-1.3","DOIUrl":null,"url":null,"abstract":"Noun-noun compounds (NNCs) occur frequently in the English language. Accurate NNC interpretation, i.e. determining the implicit relationship between the constituents of a NNC, is crucial for the advancement of many natural language processing tasks. Until now, computational NNC interpretation has been limited to approaches involving linguistic representations only. However, much research suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating on a large, relationally-annotated NNC dataset. We combine distributional word vectors with image vectors to investigate how visual information can help improve NNC interpretation systems. We find that adding visual vectors increases classification performance on our dataset in many cases.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.cmcl-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noun-noun compounds (NNCs) occur frequently in the English language. Accurate NNC interpretation, i.e. determining the implicit relationship between the constituents of a NNC, is crucial for the advancement of many natural language processing tasks. Until now, computational NNC interpretation has been limited to approaches involving linguistic representations only. However, much research suggests that grounding linguistic representations in vision or other modalities can increase performance on this and other tasks. Our work is a novel comparison of linguistic and visuo-linguistic representations for the task of NNC interpretation. We frame NNC interpretation as a relation classification task, evaluating on a large, relationally-annotated NNC dataset. We combine distributional word vectors with image vectors to investigate how visual information can help improve NNC interpretation systems. We find that adding visual vectors increases classification performance on our dataset in many cases.
英语名词-名词复合词的视觉基础解读
名词-名词复合词在英语中经常出现。准确的NNC解释,即确定NNC组成部分之间的隐含关系,对于许多自然语言处理任务的推进至关重要。到目前为止,计算NNC解释仅限于涉及语言表示的方法。然而,许多研究表明,以视觉或其他方式为基础的语言表征可以提高这一任务和其他任务的表现。我们的工作是对NNC口译任务的语言表征和视觉语言表征进行新颖的比较。我们将NNC解释定义为一个关系分类任务,在一个大型的、带关系注释的NNC数据集上进行评估。我们结合分布词向量和图像向量来研究视觉信息如何帮助改进NNC解释系统。我们发现,在许多情况下,添加视觉向量可以提高数据集的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信