Człowiek i maszyna w walce z fake news: porównanie analizy cech lingwistycznych dezinformacji dokonanej przez człowieka i sztuczną inteligencję - narzędzie uczenia maszynowego

Aleksandra Pawlicka
{"title":"Człowiek i maszyna w walce z fake news: porównanie analizy cech lingwistycznych dezinformacji dokonanej przez człowieka i sztuczną inteligencję - narzędzie uczenia maszynowego","authors":"Aleksandra Pawlicka","doi":"10.32612/uw.25449354.2022.4.pp.74-83","DOIUrl":null,"url":null,"abstract":"The term ‘fake news’ is now firmly established in public discourse and collective consciousness; Internet disinformation is a serious problem which is capable of shaking the foundations of democracy. One method of detecting fake news is to use machine learning techniques; ideally, these tools should be ‘explainable’. The aim of this paper is to present a set of linguistic features indicative of fabrication of news, to perform a human analysis of these features, to determine the veracity messages by means of artificial intelligence – a machine learning tool, and to test whether a human researcher and the machine learning algorithm recognize fake news by paying attention to the same linguistic features of the messages.","PeriodicalId":161619,"journal":{"name":"Applied Linguistics Papers","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Linguistics Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32612/uw.25449354.2022.4.pp.74-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The term ‘fake news’ is now firmly established in public discourse and collective consciousness; Internet disinformation is a serious problem which is capable of shaking the foundations of democracy. One method of detecting fake news is to use machine learning techniques; ideally, these tools should be ‘explainable’. The aim of this paper is to present a set of linguistic features indicative of fabrication of news, to perform a human analysis of these features, to determine the veracity messages by means of artificial intelligence – a machine learning tool, and to test whether a human researcher and the machine learning algorithm recognize fake news by paying attention to the same linguistic features of the messages.
“假新闻”一词现在已经牢固地建立在公共话语和集体意识中;网络虚假信息是足以动摇民主主义根基的严重问题。检测假新闻的一种方法是使用机器学习技术;理想情况下,这些工具应该是“可解释的”。本文的目的是提出一组表明新闻捏造的语言特征,对这些特征进行人工分析,通过人工智能(一种机器学习工具)确定消息的真实性,并测试人类研究人员和机器学习算法是否通过关注消息的相同语言特征来识别假新闻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信