Online Virtual Repellent Point Adaptation for Biped Walking using Iterative Learning Control

Shengzhi Wang, George Mesesan, Johannes Englsberger, Dongheui Lee, C. Ott
{"title":"Online Virtual Repellent Point Adaptation for Biped Walking using Iterative Learning Control","authors":"Shengzhi Wang, George Mesesan, Johannes Englsberger, Dongheui Lee, C. Ott","doi":"10.1109/HUMANOIDS47582.2021.9555676","DOIUrl":null,"url":null,"abstract":"We propose an online learning framework to reduce the effect of model inaccuracies and improve the robustness of the Divergent Component of Motion (DCM)-based walking algorithm. This framework uses the iterative learning control (ILC) theory for learning an adjusted Virtual Repellent Point (VRP) reference trajectory based on the current VRP error. The learned VRP reference waypoints are saved in a memory butter and used in the subsequent walking iteration. Based on the availability of force-torque (FT) sensors, we propose two different implementations using different VRP error signals for learning: measurement-error-based and commanded-error-based framework. Both implementations reduce the average VRP errors and demonstrate improved walking robustness. The measurement-error-based framework has better reference trajectory tracking performance for the measured VRP.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an online learning framework to reduce the effect of model inaccuracies and improve the robustness of the Divergent Component of Motion (DCM)-based walking algorithm. This framework uses the iterative learning control (ILC) theory for learning an adjusted Virtual Repellent Point (VRP) reference trajectory based on the current VRP error. The learned VRP reference waypoints are saved in a memory butter and used in the subsequent walking iteration. Based on the availability of force-torque (FT) sensors, we propose two different implementations using different VRP error signals for learning: measurement-error-based and commanded-error-based framework. Both implementations reduce the average VRP errors and demonstrate improved walking robustness. The measurement-error-based framework has better reference trajectory tracking performance for the measured VRP.
基于迭代学习控制的双足步行在线虚拟驱避点自适应
我们提出了一个在线学习框架,以减少模型不准确性的影响,并提高基于运动发散分量(DCM)的步行算法的鲁棒性。该框架采用迭代学习控制(ILC)理论,根据当前VRP误差学习调整后的VRP参考轨迹。学习到的VRP参考路径点被保存在一个记忆库中,用于后续的行走迭代。基于力-扭矩(FT)传感器的可用性,我们提出了使用不同VRP误差信号进行学习的两种不同实现:基于测量误差和基于命令误差的框架。两种实现都减少了平均VRP误差,并证明了改进的步行鲁棒性。基于测量误差的框架对测量的VRP具有更好的参考轨迹跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信