Constrained Shape Control of Bicubic B-Spline Surfaces by Knots

M. Hoffmann, I. Juhász
{"title":"Constrained Shape Control of Bicubic B-Spline Surfaces by Knots","authors":"M. Hoffmann, I. Juhász","doi":"10.1109/GMAI.2006.15","DOIUrl":null,"url":null,"abstract":"Constrained modification of B-spline surfaces is essential in geometric design. Modification tools by purely knot alteration are presented in this paper: moving an isoparametric line to a specified location and dragging a point of the surface to a predefined point. Both methods yield smoother change than the well-known control point repositioning, while in the first case symmetric bodies can be deformed in a constrained way by automatically preserving their symmetry. Since the modified surface remains in the original convex hull, these techniques can be useful tools in the fine tuning phase, when users do not want to change the overall shape of the body","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Constrained modification of B-spline surfaces is essential in geometric design. Modification tools by purely knot alteration are presented in this paper: moving an isoparametric line to a specified location and dragging a point of the surface to a predefined point. Both methods yield smoother change than the well-known control point repositioning, while in the first case symmetric bodies can be deformed in a constrained way by automatically preserving their symmetry. Since the modified surface remains in the original convex hull, these techniques can be useful tools in the fine tuning phase, when users do not want to change the overall shape of the body
双三次b样条曲面的结点约束形状控制
b样条曲面的约束修饰在几何设计中是必不可少的。本文介绍了纯结点改变的修改工具:将等参线移动到指定位置和将曲面上的一个点拖动到预定义点。这两种方法都比众所周知的控制点重新定位产生更平滑的变化,而在第一种情况下,对称体可以通过自动保持其对称性来以约束的方式变形。由于修改后的表面保留在原来的凸壳中,当用户不想改变车身的整体形状时,这些技术可以成为微调阶段的有用工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信