{"title":"A novel type of power picosecond semiconductor switches based on tunneling-assisted impact ionization fronts","authors":"P. Rodin, U. Ebert, W. Hundsdorfer, I. Grekhov","doi":"10.1109/MODSYM.2002.1189510","DOIUrl":null,"url":null,"abstract":"We propose a novel type of closing semiconductor switches based on a new physical mechanism-the propagation of a superfast tunneling-assisted impact ionization front. We present numerical simulations of the switching transients in the proposed devices. Our numerical results suggest that with the new mechanism, voltage pulses with a ramp up to 500 kV/ns and amplitude up to 8 kV can be formed. This sets new frontiers in pulse power electronics.","PeriodicalId":339166,"journal":{"name":"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2002.1189510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a novel type of closing semiconductor switches based on a new physical mechanism-the propagation of a superfast tunneling-assisted impact ionization front. We present numerical simulations of the switching transients in the proposed devices. Our numerical results suggest that with the new mechanism, voltage pulses with a ramp up to 500 kV/ns and amplitude up to 8 kV can be formed. This sets new frontiers in pulse power electronics.