Towards Explaining Latent Factors with Topic Models in Collaborative Recommender Systems

Marco Rossetti, Fabio Stella, M. Zanker
{"title":"Towards Explaining Latent Factors with Topic Models in Collaborative Recommender Systems","authors":"Marco Rossetti, Fabio Stella, M. Zanker","doi":"10.1109/DEXA.2013.26","DOIUrl":null,"url":null,"abstract":"Latent factor models have been proved to be the state of the art for the Collaborative Filtering approach in a Recommender System. However, latent factors obtained with mathematical methods applied to the user-item matrix can be hardly interpreted by humans. In this paper we exploit Topic Models applied to textual data associated with items to find explanations for latent factors. Based on the Movie Lens dataset and textual data about movies collected from Freebase we run a user study with over hundred participants to develop a reference dataset for evaluating different strategies towards more interpretable and portable latent factor models.","PeriodicalId":428515,"journal":{"name":"2013 24th International Workshop on Database and Expert Systems Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 24th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2013.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Latent factor models have been proved to be the state of the art for the Collaborative Filtering approach in a Recommender System. However, latent factors obtained with mathematical methods applied to the user-item matrix can be hardly interpreted by humans. In this paper we exploit Topic Models applied to textual data associated with items to find explanations for latent factors. Based on the Movie Lens dataset and textual data about movies collected from Freebase we run a user study with over hundred participants to develop a reference dataset for evaluating different strategies towards more interpretable and portable latent factor models.
用主题模型解释协同推荐系统中的潜在因素
潜在因素模型已被证明是推荐系统协同过滤方法的最新技术。然而,应用于用户-物品矩阵的数学方法得到的潜在因素很难被人类解释。在本文中,我们利用应用于与项目相关的文本数据的主题模型来寻找潜在因素的解释。基于电影镜头数据集和从Freebase收集的电影文本数据,我们运行了一个超过100名参与者的用户研究,以开发一个参考数据集,用于评估不同的策略,以实现更可解释和便携的潜在因素模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信