Towards a Circular Economy via Intelligent Metamaterials

C. Liaskos, A. Tsioliaridou, S. Ioannidis
{"title":"Towards a Circular Economy via Intelligent Metamaterials","authors":"C. Liaskos, A. Tsioliaridou, S. Ioannidis","doi":"10.1109/CAMAD.2018.8514986","DOIUrl":null,"url":null,"abstract":"The present study proposes the use of intelligent metasurfaces in the design of products, as enforcers of circular economy principles. Intelligent metasurfaces can tune their physical properties (electromagnetic, acoustic, mechanical) by receiving software commands. When incorporated within products and spaces they can mitigate the resource waste caused by inefficient, partially optimized designs and security concerns. Thus, circular economy and fast-paced product design become compatible. The study begins by considering electromagnetic metamaterials, and proposes a complete methodology for their deployment. Finally, it is shown that the same principles can be extended to the control of mechanical properties of objects, exemplary enabling the micro-management of vibrations and heat, with unprecedented circular economy potential.","PeriodicalId":173858,"journal":{"name":"2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2018.8514986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The present study proposes the use of intelligent metasurfaces in the design of products, as enforcers of circular economy principles. Intelligent metasurfaces can tune their physical properties (electromagnetic, acoustic, mechanical) by receiving software commands. When incorporated within products and spaces they can mitigate the resource waste caused by inefficient, partially optimized designs and security concerns. Thus, circular economy and fast-paced product design become compatible. The study begins by considering electromagnetic metamaterials, and proposes a complete methodology for their deployment. Finally, it is shown that the same principles can be extended to the control of mechanical properties of objects, exemplary enabling the micro-management of vibrations and heat, with unprecedented circular economy potential.
通过智能超材料实现循环经济
本研究提出在产品设计中使用智能元表面,作为循环经济原则的执行者。智能元表面可以通过接收软件命令来调整其物理特性(电磁、声学、机械)。当集成到产品和空间中时,它们可以减少由低效、部分优化的设计和安全问题引起的资源浪费。因此,循环经济和快节奏的产品设计变得兼容。该研究从考虑电磁超材料开始,并提出了一种完整的部署方法。最后,研究表明,同样的原理可以扩展到控制物体的机械性能,例如振动和热量的微观管理,具有前所未有的循环经济潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信