Multi-level topic detection algorithm for Netnews Specials

Yuanying Peng, Zhiqing Lin, Bo Xiao, Chuang Zhang
{"title":"Multi-level topic detection algorithm for Netnews Specials","authors":"Yuanying Peng, Zhiqing Lin, Bo Xiao, Chuang Zhang","doi":"10.1109/ANTHOLOGY.2013.6784968","DOIUrl":null,"url":null,"abstract":"This paper investigates the topic detection method in Netnews Specials Detection (NSD). We found that when the traditional clustering algorithms are used in NSD, the same topic is usually split into several pieces and the result is not satisfying. So a new algorithm is proposed which uses a multi-level model, better suited for NSD. Firstly, such algorithm elevates the accuracy of single-layer clustering by introducing hot search words, a selective dictionary, and an advanced weight formula. Secondly, the multiple-level model not only avoids the problem of topic over-split but also establishes a structure for Netnews Specials, which lays the foundation for quick viewing, positioning and retrieval. Experimental results show that the algorithm in the real test corpus have high accuracy, doing a better job than the traditional clustering method.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the topic detection method in Netnews Specials Detection (NSD). We found that when the traditional clustering algorithms are used in NSD, the same topic is usually split into several pieces and the result is not satisfying. So a new algorithm is proposed which uses a multi-level model, better suited for NSD. Firstly, such algorithm elevates the accuracy of single-layer clustering by introducing hot search words, a selective dictionary, and an advanced weight formula. Secondly, the multiple-level model not only avoids the problem of topic over-split but also establishes a structure for Netnews Specials, which lays the foundation for quick viewing, positioning and retrieval. Experimental results show that the algorithm in the real test corpus have high accuracy, doing a better job than the traditional clustering method.
面向网络新闻专题的多层次主题检测算法
本文研究了网络新闻专题检测(NSD)中的话题检测方法。我们发现,传统的聚类算法在NSD中使用时,通常会将同一主题分成几个部分,结果并不令人满意。为此,提出了一种新的算法,该算法采用更适合NSD的多级模型。首先,该算法通过引入热搜索词、选择性字典和高级权重公式,提高了单层聚类的准确率;其次,多层模型不仅避免了专题过拆分的问题,而且为网络新闻专题建立了一个结构,为快速浏览、定位和检索奠定了基础。实验结果表明,该算法在真实测试语料库中具有较高的准确率,优于传统的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信