{"title":"Neural Networks for Transient Modeling of Circuits : Invited Paper","authors":"J. Xiong, Alan Yang, M. Raginsky, E. Rosenbaum","doi":"10.1109/MLCAD52597.2021.9531153","DOIUrl":null,"url":null,"abstract":"Theoretical analyses as well as case studies have established that behavioral models based on a recurrent neural network (RNN) are suitable for transient modeling of nonlinear circuits. After training, an RNN model can be implemented in Verilog-A and evaluated by a SPICE-type circuit simulator. This paper describes hurdles that have prevented wide-scale adoption of the RNN as an IP-obscuring behavioral model for circuits and presents recent advances. A new stability constraint is formulated and demonstrated to guide model training and improve performance. Augmented RNNs that can accurately capture aging effects and represent process variations are presented.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Theoretical analyses as well as case studies have established that behavioral models based on a recurrent neural network (RNN) are suitable for transient modeling of nonlinear circuits. After training, an RNN model can be implemented in Verilog-A and evaluated by a SPICE-type circuit simulator. This paper describes hurdles that have prevented wide-scale adoption of the RNN as an IP-obscuring behavioral model for circuits and presents recent advances. A new stability constraint is formulated and demonstrated to guide model training and improve performance. Augmented RNNs that can accurately capture aging effects and represent process variations are presented.