An advanced hardware design based on ensemble empirical mode decomposition algorithm for heart sound signal processing

Chia-Ching Chou, Kuen-Chih Lin, W. Fang, A. H. Li, Yu-Ching Chang, Bai-Kuang Hwang, Y. Shau
{"title":"An advanced hardware design based on ensemble empirical mode decomposition algorithm for heart sound signal processing","authors":"Chia-Ching Chou, Kuen-Chih Lin, W. Fang, A. H. Li, Yu-Ching Chang, Bai-Kuang Hwang, Y. Shau","doi":"10.1109/ISCE.2013.6570241","DOIUrl":null,"url":null,"abstract":"In this study, an advanced hardware design for heart sound signal processing based on ensemble empirical mode decomposition (EEMD) is developed and implemented. The EEMD method [1] is developed to alleviate a key drawback in the original empirical mode decomposition (EMD) algorithm. In a previous research, Huang et al. [2] developed an adaptive and efficient EMD method for nonlinear and nonstationary signal analysis. The physical meaning of a single intrinsic mode function (IMF) is obscure, and the original EMD algorithm cannot separate signals with different scales into appropriate IMFs. To overcome this major drawback, a noise-assisted data analysis (NADA) method called EEMD is developed. Heart sound signals are fed into the proposed system to simulate the EEMD-fixed-point performance. A comparison of the floating-point and fixed-point results exhibits satisfactory consistency and demonstrates that our design can accommodate wide variations of dynamic ranges and complicated calculations.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"67 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, an advanced hardware design for heart sound signal processing based on ensemble empirical mode decomposition (EEMD) is developed and implemented. The EEMD method [1] is developed to alleviate a key drawback in the original empirical mode decomposition (EMD) algorithm. In a previous research, Huang et al. [2] developed an adaptive and efficient EMD method for nonlinear and nonstationary signal analysis. The physical meaning of a single intrinsic mode function (IMF) is obscure, and the original EMD algorithm cannot separate signals with different scales into appropriate IMFs. To overcome this major drawback, a noise-assisted data analysis (NADA) method called EEMD is developed. Heart sound signals are fed into the proposed system to simulate the EEMD-fixed-point performance. A comparison of the floating-point and fixed-point results exhibits satisfactory consistency and demonstrates that our design can accommodate wide variations of dynamic ranges and complicated calculations.
基于集成经验模态分解算法的心音信号处理硬件设计
本文提出并实现了一种基于集成经验模态分解(EEMD)的心音信号处理硬件设计。EEMD方法[1]是为了改善原始经验模态分解(EMD)算法的一个关键缺陷而开发的。在之前的研究中,Huang等人([2])开发了一种自适应的高效EMD方法,用于非线性和非平稳信号分析。单个内禀模态函数(IMF)的物理意义模糊,原有的EMD算法无法将不同尺度的信号分离为合适的IMF。为了克服这一主要缺点,开发了一种称为EEMD的噪声辅助数据分析(NADA)方法。将心音信号输入到系统中,模拟eemd的定点性能。浮点和定点计算结果的比较显示出令人满意的一致性,表明我们的设计可以适应大范围的动态范围变化和复杂的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信