Subspace-Based Speech Enhancement using Triangular Matrix Decomposition and Noise Variance Estimation

Volodymyr Vasylyshyn, Oleksii Koval
{"title":"Subspace-Based Speech Enhancement using Triangular Matrix Decomposition and Noise Variance Estimation","authors":"Volodymyr Vasylyshyn, Oleksii Koval","doi":"10.1109/PICST57299.2022.10238576","DOIUrl":null,"url":null,"abstract":"In this paper, the speech enhancement technique based on signal subspace approach is presented. Decomposition of the noisy speech vector space into a signal-and noise subspace is usually performed using singular value (or eigenvalue) decomposition (SVD or EVD). Rank-revealing ULV decomposition is used in the paper as computationally attractive alternative to the SVD. Minimum variance (MV) estimator of the signal matrix using ULV decomposition is considered. In comparison with the original technique the noise estimation approach is improved and the refinement step is renewed. Simulations results show that the proposed ULV-based approach provides the higher performance than the previous one.","PeriodicalId":330544,"journal":{"name":"2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST57299.2022.10238576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the speech enhancement technique based on signal subspace approach is presented. Decomposition of the noisy speech vector space into a signal-and noise subspace is usually performed using singular value (or eigenvalue) decomposition (SVD or EVD). Rank-revealing ULV decomposition is used in the paper as computationally attractive alternative to the SVD. Minimum variance (MV) estimator of the signal matrix using ULV decomposition is considered. In comparison with the original technique the noise estimation approach is improved and the refinement step is renewed. Simulations results show that the proposed ULV-based approach provides the higher performance than the previous one.
基于子空间的基于三角矩阵分解和噪声方差估计的语音增强
提出了一种基于信号子空间方法的语音增强技术。将含噪语音向量空间分解为信噪子空间通常采用奇异值(或特征值)分解(SVD或EVD)方法。揭示秩的ULV分解在本文中被用作SVD的计算上有吸引力的替代方法。研究了利用ULV分解对信号矩阵进行最小方差估计的方法。在原有技术的基础上,改进了噪声估计方法,更新了细化步骤。仿真结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信