The effect of heat treatment on spin-on oxide glasses in solar cell application

E. Bándy, A. Foldvary, M. Rencz
{"title":"The effect of heat treatment on spin-on oxide glasses in solar cell application","authors":"E. Bándy, A. Foldvary, M. Rencz","doi":"10.1109/THERMINIC.2013.6675238","DOIUrl":null,"url":null,"abstract":"This paper studies the typical solar cell applications of spin-on silicate glass layers (Filmtronics Inc. 15A and 20B) in function of the applied heat treatment. The masking capability in wet etching procedures, like surface texturing and long-time anisotropic etching used in semitransparent solar cells, and also the surface passivation characteristics of p-type surfaces were examined. Optical microscopy inspections sustain the suitability in wet etching procedures of different temperature cured SOG layers. The best masking results in long-time anisotropic etching were gained for 800°C, N2 gas cured 20B layer. Microwave induced photoconductive decay (μ-PCD) measurements were conducted to reveal the lifetime changes that occur compared to raw material of differently passivated samples: Si3N4, SiO2 and spin-on glass layers cured at distinct temperatures. The measurements confirm a significant lifetime increase reached in case of 800°C, O2 gas cured 15A layer.","PeriodicalId":369128,"journal":{"name":"19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2013.6675238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the typical solar cell applications of spin-on silicate glass layers (Filmtronics Inc. 15A and 20B) in function of the applied heat treatment. The masking capability in wet etching procedures, like surface texturing and long-time anisotropic etching used in semitransparent solar cells, and also the surface passivation characteristics of p-type surfaces were examined. Optical microscopy inspections sustain the suitability in wet etching procedures of different temperature cured SOG layers. The best masking results in long-time anisotropic etching were gained for 800°C, N2 gas cured 20B layer. Microwave induced photoconductive decay (μ-PCD) measurements were conducted to reveal the lifetime changes that occur compared to raw material of differently passivated samples: Si3N4, SiO2 and spin-on glass layers cured at distinct temperatures. The measurements confirm a significant lifetime increase reached in case of 800°C, O2 gas cured 15A layer.
热处理对自旋氧化玻璃在太阳能电池中的应用的影响
本文研究了自旋硅酸玻璃层(Filmtronics公司15A和20B)在太阳能电池中的典型应用。研究了半透明太阳能电池表面纹理化和长时间各向异性蚀刻等湿法蚀刻工艺的掩蔽性能,以及p型表面的钝化特性。光学显微镜检查支持湿法蚀刻过程中不同温度固化SOG层的适用性。在800°C、N2气固化的20B层中获得了最佳的长时间各向异性刻蚀掩蔽效果。通过微波诱导光导衰减(μ-PCD)测量,揭示了不同钝化样品(Si3N4、SiO2和在不同温度下固化的自旋玻璃层)的寿命变化。测量结果证实,在800°C O2气体固化15A层的情况下,寿命显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信