Khodor Ahmad Fawaz, T. Arslan, S. Khawam, M. Muir, I. Nousias, Iain A. B. Lindsay, A. Erdogan
{"title":"A dynamically reconfigurable asynchronous processor","authors":"Khodor Ahmad Fawaz, T. Arslan, S. Khawam, M. Muir, I. Nousias, Iain A. B. Lindsay, A. Erdogan","doi":"10.1109/SASP.2010.5521141","DOIUrl":null,"url":null,"abstract":"The main design requirements for high-throughput mobile applications are energy efficiency and programmability. This paper presents a novel dynamically reconfigurable processor that targets these requirements. Our processor consists of a heterogeneous array of coarse grain asynchronous cells. The architecture maintains most of the benefits of custom asynchronous design, while also providing programmability via conventional high-level languages. Results show that our processor delivers considerably lower power consumption when compared to a market leading VLIW and a low-power ARM processor, while maintaining their throughput performance. For example, our processor resulted in a reduction in power consumption over the ARM7 processor of over 9 times when running the bilinear demosaicing algorithm at the same throughput. Our processor was also compared to an equivalent synchronous design, resulting in a power reduction of up to 15%.","PeriodicalId":119893,"journal":{"name":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2010.5521141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The main design requirements for high-throughput mobile applications are energy efficiency and programmability. This paper presents a novel dynamically reconfigurable processor that targets these requirements. Our processor consists of a heterogeneous array of coarse grain asynchronous cells. The architecture maintains most of the benefits of custom asynchronous design, while also providing programmability via conventional high-level languages. Results show that our processor delivers considerably lower power consumption when compared to a market leading VLIW and a low-power ARM processor, while maintaining their throughput performance. For example, our processor resulted in a reduction in power consumption over the ARM7 processor of over 9 times when running the bilinear demosaicing algorithm at the same throughput. Our processor was also compared to an equivalent synchronous design, resulting in a power reduction of up to 15%.