An Interactive Learning and Adaptation Framework for Adaptive Robot Assisted Therapy

K. Tsiakas, Michalis Papakostas, Benjamin Chebaa, Dylan Ebert, V. Karkaletsis, F. Makedon
{"title":"An Interactive Learning and Adaptation Framework for Adaptive Robot Assisted Therapy","authors":"K. Tsiakas, Michalis Papakostas, Benjamin Chebaa, Dylan Ebert, V. Karkaletsis, F. Makedon","doi":"10.1145/2910674.2935857","DOIUrl":null,"url":null,"abstract":"In this paper, we present an interactive learning and adaptation framework. The framework combines Interactive Reinforcement Learning methods to effectively adapt and refine a learned policy to cope with new users. We argue that implicit feedback provided by the primary user and guidance from a secondary user can be integrated to the adaptation mechanism, resulting at a tailored and safe interaction. We illustrate this framework with a use case in Robot Assisted Therapy, presenting a Robot Yoga Trainer that monitors a yoga training session, adjusting the session parameters based on human motion activity recognition and evaluation through depth data, to assist the user complete the session, following a Reinforcement Learning approach.","PeriodicalId":359504,"journal":{"name":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910674.2935857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present an interactive learning and adaptation framework. The framework combines Interactive Reinforcement Learning methods to effectively adapt and refine a learned policy to cope with new users. We argue that implicit feedback provided by the primary user and guidance from a secondary user can be integrated to the adaptation mechanism, resulting at a tailored and safe interaction. We illustrate this framework with a use case in Robot Assisted Therapy, presenting a Robot Yoga Trainer that monitors a yoga training session, adjusting the session parameters based on human motion activity recognition and evaluation through depth data, to assist the user complete the session, following a Reinforcement Learning approach.
自适应机器人辅助治疗的交互式学习和适应框架
在本文中,我们提出了一个交互式学习和适应框架。该框架结合了交互式强化学习方法来有效地适应和改进学习策略以应对新用户。我们认为,主用户提供的隐式反馈和次用户的指导可以整合到适应机制中,从而产生量身定制的安全交互。我们用机器人辅助治疗中的一个用例来说明这个框架,展示了一个机器人瑜伽教练,它可以监控瑜伽训练课程,通过深度数据根据人类运动活动识别和评估来调整课程参数,以帮助用户完成课程,遵循强化学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信