Evolving models for meso-scale structures

A. Saxena, S. Iyengar
{"title":"Evolving models for meso-scale structures","authors":"A. Saxena, S. Iyengar","doi":"10.1109/COMSNETS.2016.7439976","DOIUrl":null,"url":null,"abstract":"Real world complex networks are scale free and possess meso-scale properties like core-periphery and community structure. We study evolution of the core over time in real world networks. This paper proposes evolving models for both unweighted and weighted scale free networks having local and global core-periphery as well as community structure. Network evolves using topological growth, self growth, and weight distribution function. To validate the correctness of proposed models, we use K-shell and S-shell decomposition methods. Simulation results show that the generated unweighted networks follow power law degree distribution with droop head and heavy tail. Similarly, generated weighted networks follow degree, strength, and edge-weight power law distributions. We further study other properties of complex networks, such as clustering coefficient, nearest neighbor degree, and strength degree correlation.","PeriodicalId":185861,"journal":{"name":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2016.7439976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Real world complex networks are scale free and possess meso-scale properties like core-periphery and community structure. We study evolution of the core over time in real world networks. This paper proposes evolving models for both unweighted and weighted scale free networks having local and global core-periphery as well as community structure. Network evolves using topological growth, self growth, and weight distribution function. To validate the correctness of proposed models, we use K-shell and S-shell decomposition methods. Simulation results show that the generated unweighted networks follow power law degree distribution with droop head and heavy tail. Similarly, generated weighted networks follow degree, strength, and edge-weight power law distributions. We further study other properties of complex networks, such as clustering coefficient, nearest neighbor degree, and strength degree correlation.
中尺度结构的演化模式
现实世界的复杂网络是无尺度的,具有核心-外围和群落结构等中尺度特性。我们在现实世界的网络中研究核心随着时间的演变。本文提出了具有局部和全局核心-边缘以及社区结构的非加权和加权无尺度网络的演化模型。网络的进化使用拓扑增长、自增长和权值分布函数。为了验证所提出模型的正确性,我们使用了k壳和s壳分解方法。仿真结果表明,生成的无权网络服从幂律度分布,头下垂尾重。同样,生成的加权网络遵循程度、强度和边权幂律分布。我们进一步研究了复杂网络的其他性质,如聚类系数、最近邻度和强度关联度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信