A Comparative Study on Diagnosing Wind Turbine Blade Fault Conditions using Vibration Data through META Classifiers

M. R. Sethi, Banala Hemasudheer, S. Sahoo, Saummit Kanoongo
{"title":"A Comparative Study on Diagnosing Wind Turbine Blade Fault Conditions using Vibration Data through META Classifiers","authors":"M. R. Sethi, Banala Hemasudheer, S. Sahoo, Saummit Kanoongo","doi":"10.1109/icepe55035.2022.9798026","DOIUrl":null,"url":null,"abstract":"The primary purpose of this study is to characterize distinct blade faults using statistical parameters collected from quiver signals. The machine learning approach to classification includes feature extraction, feature selection, and feature categorization. The J48 decision tree approach utilizes to choose statistical characteristics from vibration signals extracted using the DAQ (Data Acquisition System). Finally, features are classified using meta classifiers that use random subspace classifiers and random committee classifiers. The accuracy and performance of other limitations are going to compare. A prototype model will develop that allows for accurate fault classification in a short period. This research work is unique because it employs meta-classifiers like Random Subspace and Random Committee Classifier to categorize wind turbine blades using vibration data quickly. With a computing time of 0.01 seconds, the Random Committee Classifier achieves an accuracy of 80%.","PeriodicalId":168114,"journal":{"name":"2022 4th International Conference on Energy, Power and Environment (ICEPE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Energy, Power and Environment (ICEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icepe55035.2022.9798026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The primary purpose of this study is to characterize distinct blade faults using statistical parameters collected from quiver signals. The machine learning approach to classification includes feature extraction, feature selection, and feature categorization. The J48 decision tree approach utilizes to choose statistical characteristics from vibration signals extracted using the DAQ (Data Acquisition System). Finally, features are classified using meta classifiers that use random subspace classifiers and random committee classifiers. The accuracy and performance of other limitations are going to compare. A prototype model will develop that allows for accurate fault classification in a short period. This research work is unique because it employs meta-classifiers like Random Subspace and Random Committee Classifier to categorize wind turbine blades using vibration data quickly. With a computing time of 0.01 seconds, the Random Committee Classifier achieves an accuracy of 80%.
基于META分类器的振动数据诊断风电叶片故障状态的比较研究
本研究的主要目的是利用从颤振信号中收集的统计参数来表征不同的叶片故障。分类的机器学习方法包括特征提取、特征选择和特征分类。J48决策树方法用于从DAQ(数据采集系统)提取的振动信号中选择统计特征。最后,使用元分类器对特征进行分类,元分类器使用随机子空间分类器和随机委员会分类器。准确性和性能的其他限制将进行比较。将开发一个原型模型,以便在短时间内进行准确的故障分类。本研究的独特之处在于,它采用随机子空间和随机委员会分类器等元分类器,利用振动数据对风力涡轮机叶片进行快速分类。随机委员会分类器的计算时间为0.01秒,准确率达到80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信