Importance of vegetation type in forest cover estimation

A. Karpatne, Mace Blank, Michael Lau, S. Boriah, K. Steinhaeuser, M. Steinbach, Vipin Kumar
{"title":"Importance of vegetation type in forest cover estimation","authors":"A. Karpatne, Mace Blank, Michael Lau, S. Boriah, K. Steinhaeuser, M. Steinbach, Vipin Kumar","doi":"10.1109/CIDU.2012.6382203","DOIUrl":null,"url":null,"abstract":"Forests are an important natural resource that play a major role in sustaining a number of vital geochemical and bioclimatic processes. Since damage to forests due to natural and anthropogenic factors can have long-lasting impacts on the health of the planet, monitoring and estimating forest cover and its losses at global, regional and local scales is of primary concern. Developing forest cover estimation techniques that utilize remote sensing datasets offers global applicability at high temporal frequencies. However, estimating forest cover using satellite observations is challenging in the presence of heterogeneous vegetation types, each having its unique data characteristics. In this paper, we explore techniques for incorporating information about the vegetation type in forest cover estimation algorithms. We show that utilizing the vegetation type improves performance regardless of the choice of input data or forest cover learning algorithm. We also provide a mechanism to automatically extract information about the vegetation type by partitioning the input data using clustering.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Forests are an important natural resource that play a major role in sustaining a number of vital geochemical and bioclimatic processes. Since damage to forests due to natural and anthropogenic factors can have long-lasting impacts on the health of the planet, monitoring and estimating forest cover and its losses at global, regional and local scales is of primary concern. Developing forest cover estimation techniques that utilize remote sensing datasets offers global applicability at high temporal frequencies. However, estimating forest cover using satellite observations is challenging in the presence of heterogeneous vegetation types, each having its unique data characteristics. In this paper, we explore techniques for incorporating information about the vegetation type in forest cover estimation algorithms. We show that utilizing the vegetation type improves performance regardless of the choice of input data or forest cover learning algorithm. We also provide a mechanism to automatically extract information about the vegetation type by partitioning the input data using clustering.
植被类型在森林覆盖估算中的重要性
森林是一种重要的自然资源,在维持若干重要的地球化学和生物气候过程方面发挥着重要作用。由于自然和人为因素对森林造成的破坏可能对地球的健康产生长期影响,因此在全球、区域和地方各级监测和估计森林覆盖及其损失是主要关注的问题。开发利用遥感数据集的森林覆盖估算技术在高时间频率上具有全球适用性。然而,在存在异质性植被类型的情况下,利用卫星观测估计森林覆盖具有挑战性,每种植被类型都有其独特的数据特征。在本文中,我们探讨了在森林覆盖估计算法中纳入植被类型信息的技术。我们表明,无论选择输入数据还是森林覆盖学习算法,利用植被类型都可以提高性能。我们还提供了一种机制,通过使用聚类对输入数据进行分区来自动提取有关植被类型的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信