Discrete Time Evolution of Proteomic Biomarkers

David Gnabasik, G. Alaghband
{"title":"Discrete Time Evolution of Proteomic Biomarkers","authors":"David Gnabasik, G. Alaghband","doi":"10.1109/CSCI.2014.87","DOIUrl":null,"url":null,"abstract":"We measured a panel of 12 cytokines in seven different populations: i.e., healthy non-smokers, healthy smokers, COPD, Aden carcinoma and Squamous cell carcinoma of the lung. From these 12 biomarkers of host response to lung disease we have developed a computational and visual model that reliably distinguishes these clinical types. Protein biomarker behavior models are developed as the topological evolution of linear discrete systems from changes in patient protein sample concentrations.","PeriodicalId":439385,"journal":{"name":"2014 International Conference on Computational Science and Computational Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Science and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI.2014.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We measured a panel of 12 cytokines in seven different populations: i.e., healthy non-smokers, healthy smokers, COPD, Aden carcinoma and Squamous cell carcinoma of the lung. From these 12 biomarkers of host response to lung disease we have developed a computational and visual model that reliably distinguishes these clinical types. Protein biomarker behavior models are developed as the topological evolution of linear discrete systems from changes in patient protein sample concentrations.
蛋白质组学生物标志物的离散时间进化
我们测量了7个不同人群中的12种细胞因子:即健康的非吸烟者、健康的吸烟者、慢性阻塞性肺病、亚丁癌和肺鳞状细胞癌。从这12个宿主对肺部疾病反应的生物标志物中,我们开发了一个计算和视觉模型,可以可靠地区分这些临床类型。蛋白质生物标志物行为模型是作为线性离散系统的拓扑进化从患者蛋白质样品浓度的变化而发展起来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信