Intelligent Method for Identifying the Fraudulent Online Stores

Khrystyna Lipianina-Honcharenko, I. Lukasevych-Krutnyk, N. Butryn-Boka, A. Sachenko, Sergii Grodskyi
{"title":"Intelligent Method for Identifying the Fraudulent Online Stores","authors":"Khrystyna Lipianina-Honcharenko, I. Lukasevych-Krutnyk, N. Butryn-Boka, A. Sachenko, Sergii Grodskyi","doi":"10.1109/PICST54195.2021.9772195","DOIUrl":null,"url":null,"abstract":"There is a significant consolidation of IT fraudsters in modern conditions, so the definition of fraudulent sites is a relevant applied study. On the basis of the conducted researches the basic parameters which can be parsed from the required site of online store, namely absence or presence of the corresponding information are defined. An intelligent method for detecting fraudulent online stores has been developed, which allows automating the process of detecting fraudulent sites only by entering a link to the site. The method is implemented on the basis of machine learning classification methods: Logistic Regression (LR), Random Forest (RF), KNN, Naive Bayes (NB), Support Vector (SVM) and DecisionTree (DT). Also, each method of classification is modeled by different approaches, namely: Imbalanced; Undersampling; Oversampling; SMOTE; ADASYN. The realization of method is implemented on the basis of sites operating in Ukraine. There are 67 sites in the dataset, 45% of which are fraudulent.according to the results it turned out that the best simulation estimates are based on the DecisionTree by the approach ADASYN and Random Forest by the approach Oversampling. It shows a 100% result of defining a fraudulent site.","PeriodicalId":391592,"journal":{"name":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICST54195.2021.9772195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a significant consolidation of IT fraudsters in modern conditions, so the definition of fraudulent sites is a relevant applied study. On the basis of the conducted researches the basic parameters which can be parsed from the required site of online store, namely absence or presence of the corresponding information are defined. An intelligent method for detecting fraudulent online stores has been developed, which allows automating the process of detecting fraudulent sites only by entering a link to the site. The method is implemented on the basis of machine learning classification methods: Logistic Regression (LR), Random Forest (RF), KNN, Naive Bayes (NB), Support Vector (SVM) and DecisionTree (DT). Also, each method of classification is modeled by different approaches, namely: Imbalanced; Undersampling; Oversampling; SMOTE; ADASYN. The realization of method is implemented on the basis of sites operating in Ukraine. There are 67 sites in the dataset, 45% of which are fraudulent.according to the results it turned out that the best simulation estimates are based on the DecisionTree by the approach ADASYN and Random Forest by the approach Oversampling. It shows a 100% result of defining a fraudulent site.
一种识别欺诈网上商店的智能方法
在现代条件下,IT欺诈者的数量显著增加,因此欺诈性网站的定义是一项相关的应用研究。在研究的基础上,定义了在线商店所需站点可以解析的基本参数,即相应信息的缺失或存在。已经开发出一种用于检测欺诈性在线商店的智能方法,该方法仅通过输入到该网站的链接就可以自动检测欺诈性网站。该方法是基于机器学习分类方法:逻辑回归(LR)、随机森林(RF)、KNN、朴素贝叶斯(NB)、支持向量机(SVM)和决策树(DT)实现的。此外,每种分类方法采用不同的方法建模,即:不平衡;欠采样;过采样;击杀;ADASYN。该方法的实现是在乌克兰运营站点的基础上实现的。数据集中有67个网站,其中45%是欺诈网站。结果表明,最好的模拟估计是基于ADASYN方法的decision - tree和Oversampling方法的Random Forest。它显示了定义欺诈网站的100%结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信