Exact inference and learning in hybrid Bayesian Networks for lane change intention classification

A. Koenig, Tobias Rehder, S. Hohmann
{"title":"Exact inference and learning in hybrid Bayesian Networks for lane change intention classification","authors":"A. Koenig, Tobias Rehder, S. Hohmann","doi":"10.1109/IVS.2017.7995927","DOIUrl":null,"url":null,"abstract":"Determining the current intentions of other drivers is essential for correctly predicting or simulating their future actions. Especially unpredicted lane changes can result in very uncomfortable or even dangerous braking maneuvers for succeeding vehicles. Bayesian Networks (BN) allow for a physically motivated probabilistic representation of features influencing driver intentions. While features often take continuous values, e.g. velocity and distance, maneuver intentions are discrete, which results in hybrid BN. For efficient and exact inference, we implement an approach for hybrid nets into the original Bayes Net Toolbox. Furthermore, we extend the approach with a learning component to train a BN with simulated traffic data. Finally, we compare the classification performance for lane changes with a Deep Neural Network (DNN) classifier.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Determining the current intentions of other drivers is essential for correctly predicting or simulating their future actions. Especially unpredicted lane changes can result in very uncomfortable or even dangerous braking maneuvers for succeeding vehicles. Bayesian Networks (BN) allow for a physically motivated probabilistic representation of features influencing driver intentions. While features often take continuous values, e.g. velocity and distance, maneuver intentions are discrete, which results in hybrid BN. For efficient and exact inference, we implement an approach for hybrid nets into the original Bayes Net Toolbox. Furthermore, we extend the approach with a learning component to train a BN with simulated traffic data. Finally, we compare the classification performance for lane changes with a Deep Neural Network (DNN) classifier.
混合贝叶斯网络在变道意图分类中的精确推理与学习
确定其他驾驶员的当前意图对于正确预测或模拟其未来行为至关重要。特别是不可预测的车道变化会导致非常不舒服甚至危险的制动操作,为后续车辆。贝叶斯网络(BN)允许对影响驾驶员意图的特征进行物理动机概率表示。虽然特征通常取连续值,例如速度和距离,但机动意图是离散的,这导致混合BN。为了高效准确的推理,我们在原始贝叶斯网络工具箱中实现了一种混合网络的方法。此外,我们用一个学习组件扩展了该方法,用模拟交通数据训练网络。最后,我们与深度神经网络(DNN)分类器比较了车道变化的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信